We report on a simple spectral interferometric technique for chromatic dispersion measurement of a short length optical fibre including the zero-dispersion wavelength. The method utilizes a supercontinuum source, a dispersion balanced Mach-Zehnder interferometer and a fibre under test of known length inserted in one of the interferometer arms and the other arm with adjustable path length. The method is based on resolving one spectral interferogram (spectral fringes) by a low-resolution NIR spectrometer. The fringe order versus the precise wavelength position of the interference extreme in the recorded spectral signal is fitted to the approximate function from which the chromatic dispersion is obtained. We verify the applicability of the method by measuring the chromatic dispersion of two polarization modes in a birefringent holey fibre. The measurement results are compared with those obtained by a broad spectral range (500-1600 nm) measurement method, and good agreement is confirmed.
We report on a substantially improved white-light spectral interferometric technique for measurement of the group and phase modal birefringence in polarization-maintaining fibres (PMFs) over a wide wavelength range (e.g. 480–1600 nm). The technique utilizes a tandem configuration of a Michelson interferometer and a PMF placed between Glan–Taylor polarizer and analyzer. Spectral signals are recorded by VIS–NIR and NIR fibre-optic spectrometers to measure the equalization wavelength as a function of the path length difference adjusted in the interferometer, or equivalently, the wavelength dependence of the group modal birefringence in the PMF. Moreover, a new procedure is used to specify the sign of the group modal birefringence. A polynomial fit is applied to the measured data to determine also the wavelength dependence of the phase modal birefringence in the PMF over a wide spectral range.
We report on a white-light interferometric technique for a broad spectral range measurement (e.g. 500-1600 nm) of chromatic dispersion of polarization modes in short-length optical fibres. The technique utilizes an unbalanced Mach-Zehnder interferometer with a fibre under test of known length inserted in one of the interferometer arms and the other arm with adjustable path length. We record a series of spectral interferograms by VIS-NIR and NIR fibre-optic spectrometers to measure the equalization wavelength as a function of the path length difference, or equivalently the differential group index dispersion of one polarization mode. The differential group dispersion of the other polarization mode is obtained from measurement of the group modal birefringence dispersion. We verify the applicability of the method by measuring the chromatic dispersion of polarization modes in a birefringent holey fibre. We apply a five-term power series fit to the measured data and confirm by its differentiation that the chromatic dispersion agrees well with that specified by the manufacturer. We also measure by this technique the chromatic dispersion of polarization modes in an elliptical-core fibre.
A reflection-based fibre-optic refractive index sensor using surface plasmon resonance (SPR) in a thin metal film sputtered on a bare core of a multimode optical fibre is presented. The sensing element of the SPR fibre-optic sensor is the core of a step-index optical fibre made of fused silica with a gold film double-sided sputtered on the whole core surface, including the core end face. Consequently, a terminated reflection-based sensing scheme to measure the refractive indices of liquids is realized. The sensing scheme uses a wavelength interrogation method and the refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.363 are measured. In addition, the increase in the sensitivity of the SPR fibre-optic refractive index sensor with the decrease of the fibre sensing length is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.