ABSTRACT. An international network of passive correlation ranging of a geostationary telecommunication satellite is considered in the article. The network is developed by the RI "MAO". The network consists of five spatially separated stations of synchronized reception of DVB-S signals of digital satellite TV. The stations are located in Ukraine and Latvia. The time difference of arrival (TDOA) on the network stations of the DVB-S signals, radiated by the satellite, is a measured parameter.The results of TDOA estimation obtained by the network in May-August 2016 are presented in the article. Orbital parameters of the tracked satellite are determined using measured values of the TDOA and two models of satellite motion: the analytical model SGP4/SDP4 and the model of numerical integration of the equations of satellite motion. Both models are realized using the free low-level space dynamics library OREKIT (ORbit Extrapolation KIT).
The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv.The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.