Abstract. In this paper an efficient method has been proposed to classify handwritten numerals using leader algorithm and Radial Basis Function network. Handwritten numerals are represented in matrix form and clusters with leaders are formed for each row of each digit separately. Every leader is with single target digit. Duplication patterns are avoided from the cluster leaders by combining those in a single pattern with target vectors having corresponding bits in on mode. Now resultant target vectors are with 10 bits corresponding to the number of digits considered for classification. Constructed leaders are trained using Radial Basis Function network. Experimental results show that the minimum number of patterns are enough for training compared to total patterns and it has been observed that convergency is fast during training. Also the number of resultant leaders after avoiding duplication patterns are less and the number of bits in each resultant pattern is 12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.