This study focuses on the coalescence of dimethyl disulfide drops with the mother phase at a flat aqueous-organic interface between dimethyl disulfide and different sodium hydroxide solutions. Drop coalescence is an important part of the Merox process for regenerating the solvent. A digital high-frame rate camera was used for recording drops coalescence and duration time. Drops of dimethyl disulfide were directed in different sodium hydroxide solutions as the continuous phase. Applying the experimental design method, the influences of independent variables of drop size and physical properties on coalescence time were investigated. Computational fluid dynamics (CFD) was employed to simulate the drops released from a nozzle, moving toward the interface, and the CFD results were validated by experimental data. The maximum deviation between the predicted and experimental coalescence times was 18.7%. It was found that, among the physical properties, interfacial tension plays the most important role on the coalescence time. Based on the results, a correlation for coalescence time was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.