Increasing evidence indicates the significance of platelet-derived growth factor receptor-b (b-PDGFR) signaling in prostate cancer (PCa). Accordingly, preclinical studies suggest the potential of b-PDGFR as a therapeutic target in metastatic PCa. However, a ligand responsible for b-PDGFR activation in PCa was unknown, and recent clinical trials with imatinib mesylate showed limited success due to normal tissue toxicity. Similarly, in spite of mounting evidence indicating the significance of matriptase in PCa, little is known about its substrates or molecular actions during PCa progression. Here, we identified PDGF-D as a ligand for b-PDGFR in PCa and discovered matriptase as its regulator. Matriptase activates PDGF-D by proteolytic removal of the CUB domain in a 2-step process, creating a hemidimer, followed by growth factor domain dimer (GFD-D) generation. Matriptase can deactivate PDGF-D by further proteolytic cleavage within the GFD, revealing its biphasic regulation. Importantly, PDGF-D/matriptase colocalization is accompanied with b-PDGFR phosphorylation in human PCa tissues. This study unveiled a novel signaling axis of matriptase/PDGF-D/b-PDGFR in PCa, providing new insights into functional interplay between serine protease and growth factor signaling networks.
IntroductionThe chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis.MethodsMurine prostate epithelial cells from PTEN+/+, PTEN+/−, and PTEN−/− (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed.ResultsLoss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth.ConclusionsThese results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases.
BackgroundThe CXCL12/CXCR4 axis transactivates HER2 and promotes intraosseous tumor growth. To further explore the transactivation of HER2 by CXCL12, we investigated the role of small GTP protein Gαi2 in Src and HER2 phosphorylation in lipid raft membrane microdomains and the significance of CXCR4 in prostate cancer bone tumor growth.MethodsWe used a variety of methods such as lipid raft isolation, invasion assays, an in vivo model of intratibial tumor growth, bone histomorphometry, and immunohistochemistry to determine the role of CXCR4 signaling in lipid raft membrane microdomains and effects of targeting of CXCR4 for bone tumor growth.ResultsWe determined that (a) CXCL12/CXCR4 transactivation of EGFR and HER2 is confined to lipid raft membrane microdomains, (b) CXCL12 activation of HER2 and Src is mediated by small GTP proteins in lipid rafts, (c) inhibition of the CXCL12/CXCR4 axis through plerixafor abrogates the initial establishment of tumor growth without affecting the growth of established bone tumors, and (d) inhibition of EGFR signaling through gefitinib leads to inhibition of established bone tumor growth.ConclusionsThese data suggest that lipid raft membrane microdomains are key sites for CXCL12/CXCR4 transactivation of HER2 via small GTP binding protein Gαi2 and Src kinase. The initial establishment of prostate cancer is supported by the endosteal niche, and blocking the CXCL12/CXCR4 axis of this niche along with its downstream signaling severely compromises initial establishment of tumors in the bone microenvironment, whereas expanding bone tumors are sensitive only to the members of growth factor receptor inhibition.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0552-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.