In today's world, Cloud Computing (CC) enables the users to access computing resources and services over cloud without any need to own the infrastructure. Cloud Computing is a concept in which a network of devices, located in remote locations, is integrated to perform operations like data collection, processing, data profiling and data storage. In this context, resource allocation and task scheduling are important processes which must be managed based on the requirements of a user. In order to allocate the resources effectively, hybrid cloud is employed since it is a capable solution to process large-scale consumer applications in a pay-by-use manner. Hence, the model is to be designed as a profit-driven framework to reduce cost and make span. With this motivation, the current research work develops a Cost-Effective Optimal Task Scheduling Model (CEOTS). A novel algorithm called Target-based Cost Derivation (TCD) model is used in the proposed work for hybrid clouds. Moreover, the algorithm works on the basis of multi-intentional task completion process with optimal resource allocation. The model was successfully simulated to validate its effectiveness based on factors such as processing time, make span and efficient utilization of virtual machines. The results infer that the proposed model outperformed the existing works and can be relied in future for real-time applications.
In this study, a problem of scheduling shipping lines for a container supply chain is addressed in order to minimize the costs of charging ships and the cost of maintaining the inventory of empty containers in the port by considering the time window of the port and the amount of fuel. This is a hard-NP problem and cannot be solved on a large scale with precise methods in a logical time. Therefore, to solve and optimize the model, a meta-innovative algorithm, genetic algorithm, has been used. Also, to increase the effectiveness of the genetic algorithm, the parameters of the algorithm are adjusted using the Taguchi method. Finally, a number of problems have been solved to show the performance of this algorithm and its computational results have been compared with the results obtained from GAMS software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.