The design of a new transonic wind tunnel to reproduce bypass aero-engine flow conditions is described. This study has been driven by the interest to investigate and optimize the aero-thermal effects of an air/oil integrated surface heat exchanger placed at the inner wall of the secondary duct of a turbofan. The test section of the intermittent wind tunnel consists of a complex three-dimensional (3D) geometry. The flow evolves over the splitter, duplicated at real scale, as it does in the engine, guided by helicoidally shaped lateral walls. Numerical flow analyses have been used to guide the design of the complete wind tunnel. Zero-dimensional models have been developed to recreate the wind tunnel behaviour. Two-and three-dimensional computations have been performed to optimize the test section and the inlet guide vanes that duplicate the flow downstream of the engine fan. The reproduction of the bypass flow structure has been numerically analysed. Flow computations with and without the presence of instrumentation in the test section have been contrasted. Additionally, the influence of an aerodynamic probe on the flow has been studied numerically. This study should lead to improvements in the thermal management of future aircraft power plants, particularly by taking benefit of the cold bypass air to refrigerate the lubrication oil, without penalizing the propulsive efficiency.
Cavitation is a major problem in pump design and operation because this phenomenon may lead to various types of instabilities, including hydraulic performance loss and catastrophic damage to the pump material caused by bubble collapse. Therefore, it is critical to predict the cavitation performance of the pump in the design phase itself. The motivation of this study is to develop a systematic methodology to calculate the cavitation performance of radial flow pumps. In the first step of the present work, a cavitating nozzle flow case for which the bubble dynamic behavior is accurately resolved in literature is studied numerically. Subsequently, the capabilities of three cavitation models, implemented in the commercial code Fluent, are evaluated for three radial flow pumps designed at specific speeds ns = 10.4, 22.4, and 34.4. The numerical results are validated with global quantities based on net positive suction head (NPSH) measurements. The results led to the determination of reasonably accurate NPSH values for the defined range of specific speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.