Purpose
Environmental issues and lack of drinking water have forced researchers to find some alternatives to wastewater treatment. Because dyes are used in a variety of industrial applications such as textile and pharmaceutical, wastewater of these factories leads to several environmental problems. Using catalysis under ultraviolet-irradiation (photocatalysis) is one of the cases that is used in wastewater treatment. The purpose of this work is the photocatalytic degradation of dye (Reactive Red 198) and pharmaceutical (tetracycline) using MIL-53(Fe) and MIL-100(Fe).
Design/methodology/approach
In this work, Reactive Red 198 (RR198), an anionic dye and tetracycline as a pharmaceutical are tested with two catalysts, MIL-53(Fe) and MIL-100(Fe). Catalyst synthesis method and characterization were discussed by X-ray diffraction, scanning electron microscopy and Fourier Transform Infrared analyses, and their results are described in detail.
Findings
Dye concentration varies among 15, 20, 30 and 40 mg/L for MIL-100(Fe) for which the removal percent is 97%, 94%, 89% and 58% and for MIL-53(Fe), dye concentration increases from 20 to 40, 60 and 80 mg/L, the removal percent of which is 98%, 88%, 75% and 50%. Pharmaceutical degradation by MIL-53(Fe) and MIL-100(Fe) was 75% and 80%, respectively.
Originality/value
Photocatalytic degradation of RR198 and tetracycline using MIL-53(Fe) and MIL-100(Fe) was not studied in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.