The use of platelet-rich plasma (PRP) to facilitate healing of orthopedic-related injuries has gained popularity; however, the clinical benefits are not consistent. Differences may result from variations in growth factor (GF) levels in normal populations. The purpose of this study was to determine if GF levels present in activated PRP preparations differed by gender and age (≤ 25 versus >25 years) in a healthy population (N = 102). All GFs analyzed (epidermal growth factor [EGF], hepatocyte growth factor [HGF], insulin growth factor-1 [IGF-1], platelet-derived growth factor-AB [PDGF-AB], platelet-derived growth factor-BB [PDGF-BB], transforming growth factor beta-1 [TGFβ-1], and vascular endothelial growth factor) had higher levels for females and for those ≤ 25 years old. Of the GFs tested, four of seven were significantly higher (p < 0.05) for females (EGF, HGF, IGF-1, PDGF-BB), the most significant being IGF-1 (female, 85.0; male, 69.3 ng/mL; p < 0.01). Five of seven GFs achieved significance (p < 0.05) for people ≤ 25 years old (EGF, IGF-1, PDGP-AB, PDGF-BB, and TGFβ-1), with IGF and PDGF-AB achieving p < 0.001 (≤ 25 years, 85.1; >25 years, 56.8, and ≤ 25 years, 7.66; >25 years, 5.77 ng/mL, respectively). Finally, for both genders, most of the GFs were positively correlated with all GFs. This study demonstrated that both age and gender account for variations in specific GFs present in PRP, and this may partially explain some of the inconsistent results of PRP clinical trials.
Exposure to environmental toxins increases the risk of neurodegenerative diseases including Parkinson's disease (PD). Rotenone is a neurotoxin that has been used to induce experimental Parkinsonism in rats. We used the rotenone model of experimental Parkinsonism to explore a novel aspect of extra-nigral degeneration, the neurodegeneration of spinal cord (SC), in PD. Rotenone administration to male Lewis rats caused significant neuronal cell death in cervical and lumbar SC as compared with control animals. Dying neurons were motoneurons as identified by double immunofluorescent labeling for terminal deoxynucleotidyl transferase, recombinant-mediated dUTP nick-end labeling-positive (TUNEL(+)) cells and choline acetyltransferase (ChAT)-immunoreactivity. Neuronal death was accompanied by abundant astrogliosis and microgliosis as evidenced from glial fibrillary acidic protein (GFAP)-immunoreactivity and OX-42-immunoreactivity, respectively, implicating an inflammatory component during neurodegeneration in SC. However, the integrity of the white matter in SC was not affected by rotenone administration as evidenced from the non co-localization of any TUNEL(+) cells with GFAP-immunoreactivity and myelin basic protein (MBP)-immunoreactivity, the selective markers for astrocytes and oligodendrocytes, respectively. Increased activities of 76 kD active m-calpain and 17/19 kD active caspase-3 further demonstrated involvement of these enzymes in cell death in SC. The finding of ChAT(+) cell death also suggested degeneration of SC motoneurons in rotenone-induced experimental Parkinsonism. Thus, this is the first report of its kind in which the selective vulnerability of a putative parkinsonian target outside of nigrostriatal system has been tested using an environmental toxin to understand the pathophysiology of PD. Moreover, rotenone-induced degeneration of SC motoneuron in this model of experimental Parkinsonism progressed with upregulation of calpain and caspase-3.
Although calpain up-regulation is well established in experimental auto-immune encephalomyelitis (EAE), a link between increased calpain expression and activity and neurodegeneration has not been examined. Therefore, spinal cord tissue from Lewis rats with EAE was examined to test the hypothesis that increased calpain expression in neurons would correlate with increased cell death and axonal damage in a time-dependent manner following EAE induction. We found that increased calpain expression in EAE corresponded to increased TUNEL-positive neurons and to increased expression of dephosphorylated neurofilament protein, markers of cell death and axonal degeneration, respectively. An increase in internucleosomal DNA fragmentation in EAE spinal cord suggested that cell death was, at least partially, due to apoptosis. Axonal damage was further demonstrated in EAE spinal cord compared with control via morphological analysis, revealing granular degeneration of filament and microtubule integrity, loss of myelin, and mitochondrial damage. Calcium (Ca2+) influx, which is required for calpain activation, was also increased in EAE spinal cord. From these findings, we conclude that increases in Ca2+-induced calpain activity may play a crucial role in neurodegeneration in acute EAE.
Multiple sclerosis (MS) is a devastating autoimmune demyelinating disease of the CNS. This study investigated whether expression and activity of the calcium-activated protease calpain correlated with Th1/Th2 dysregulation in MS patients during states of relapse and remission. Calpain expression and activity were significantly increased in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to controls, with the highest expression and activity noted during relapse. Th1 cytokines were highest and Th2 cytokines were lowest in MS patients during relapse. Treatment with calpain inhibitor, calpeptin, decreased Th1 cytokines in PBMCs from MS patients. Calpain inhibitor also reduced degradation of myelin basic protein (MBP) by inhibiting the calpain secreted from MBPspecific T cells. Taken together, these results suggested calpain involvement in Th1/Th2 dysregulation in MS patients.
Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca2+-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP), and also promoted intracellular neuroprotective pathways in optic nerve in EAE rats. Thus, these data suggest that calpain is involved in inflammatory as well as in neurodegenerative aspects of the disease and may be a promising target for treating ON in EAE and MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.