BackgroundGut microbiota has been increasingly acknowledged to shape significantly human health, contributing to various autoimmune diseases, both intestinal and non-intestinal, including multiple sclerosis (MS). Gut microbiota studies in patients with relapsing remitting MS strongly suggested its possible role in immunoregulation; however, the profile and potential of gut microbiota involvement in patients with primary progressive MS (PPMS) patients has received much less attention due to the rarity of this disease form. We compared the composition and structure of faecal bacterial assemblage using Illumina MiSeq sequencing of V3-V4 hypervariable region of 16S rRNA genes amplicons in patients with primary progressive MS and in the healthy controls.ResultsOver all samples 12 bacterial phyla were identified, containing 21 classes, 25 orders, 54 families, 174 genera and 1256 operational taxonomic units (OTUs). The Firmicutes phylum was found to be ultimately dominating both in OTUs richness (68% of the total bacterial OTU number) and in abundance (71% of the total number of sequence reads), followed by Bacteroidetes (12 and 16%, resp.) and Actinobacteria (7 and 6%, resp.). Summarily in all samples the number of dominant OTUs, i.e. OTUs with ≥1% relative abundance, was 13, representing much less taxonomic richness (three phyla, three classes, four orders, six families and twelve genera) as compared to the total list of identified OTUs and accounting for 30% of the sequence reads number in the healthy cohort and for 23% in the PPMS cohort. Human faecal bacterial diversity profiles were found to differ between PPMS and healthy cohorts at different taxonomic levels in minor or rare taxa. Marked PPMS-associated increase was found in the relative abundance of two dominant OTUs (Gemmiger sp. and an unclassified Ruminococcaceae). The MS-related differences were also found at the level of minor and rare OTUs (101 OTUs). These changes in OTUs’ abundance translated into increased bacterial assemblage diversity in patients.ConclusionThe findings are important for constructing a more detailed global picture of the primary progressive MS-associated gut microbiota, contributing to better understanding of the disease pathogenesis.
Recently the relationship between gut microbiota changes and the development of immune-mediated diseases of the central nervous system (CNS) has been reported. This review presents literature data on the effect of gut microbiota on the function of the immune and nervous systems. The authors discuss possible mechanisms of the relationship between gut microbiota changes and CNS diseases on the model of multiple sclerosis (MS).
The multiple sclerosis (MS) incidence rate has been increasing in Russia, but the information about the gut bacteriobiome in the MS-afflicted patients is scarce. Using the Illumina MiSeq sequencing of 16S rRNA gene amplicons, we aimed to analyze the Firmicutes phylum and its taxa in a cohort of Moscow patients with relapsing-remitting MS, assessing the effects of age, BMI, disease modifying therapy (DMT), disability (EDSS), and gender. Among 1252 identified bacterial OTUs, 857 represented Firmicutes. The phylum was the most abundant also in sequence reads, overall averaging 74 ± 13%. The general linear model (GLM) analysis implicated Firmicutes/Clostridia/Clostridiales/Lachospiraceae/Blautia/Blautia wexlerae as increasing with BMI, and only Lachospiraceae/Blautia/Blautia wexlerae as increasing with age. A marked DMT-related decrease in Firmicutes was observed in females at the phylum, class (Clostridia), and order (Clostridiales) levels. The results of our study implicate DMT and gender as factors shaping the fecal Firmicutes assemblages. Together with the gender-dependent differential MS incidence growth rate in the country, the results suggest the likely involvement of gender-specific pathoecological mechanisms underlying the occurrence of the disease, switching between its phenotypes and response to disease-modifying therapies. Overall, the presented profile of Firmicutes can be used as a reference for more detailed research aimed at elucidating the contribution of this core phylum and its lower taxa into the etiology and progression of relapsing-remitting multiple sclerosis.
Long-term disease modifying therapy (DMD) therapy is the basis of modern MS treatment, effiecacy of which is modulated by the patient's adherence to therapy. One of the possible solutions of low adherence improvement is the use of innovative drugs and the development of more convenient regimens of injectable medications. This article gives a brief review of peg-interferon β-1a clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.