We have explored the structure of hot magnetized accretion flow with thermal conduction. The importance of thermal conduction in hot accretion flows has been confirmed by observations of the hot gas surrounding Sgr A * and a few other nearby galactic nuclei. For a steady state structure of such accretion flows a set of self similar solutions are presented. In this paper, we have actually tried to re-check the solution presented by Abbassi et al. (2008) using a physical constrain. In this study we find that Eq 29 places a new constrain that limits answers presented by Abbassi et al. 2008. In that paper the parameter space in which it is established in the new constrain was plotted. However, the new requirement makes up only a small parameter space with physically acceptable solutions. And now in this manuscript we have followed the idea with more effort, and tried to find out how thermal conduction influences the structur of the disks in a physical parameter space. We have found out that the existence of thermal conduction will lead to reduction of accretion and radial and azimuthal velocities as well as the vertical thickness of the disk, which is slightly reduced. Moreover, the surface density of the disk will increase when the thermal conduction becomes important in the hot magnetized flow.
We study linear theory of the magnetized Rayleigh-Taylor instability in a system consisting of ions and neutrals. Both components are affected by a uniform vertical gravitational field. We consider ions and neutrals as two separate fluid systems where they can exchange momentum through collisions. However, ions have direct interaction with the magnetic field lines but neutrals are not affected by the field directly. The equations of our two-fluid model are linearized and by applying a set of proper boundary conditions, a general dispersion relation is derived for our two superposed fluids separated by a horizontal boundary. We found two unstable modes for a range of the wavenumbers. It seems that one of the unstable modes corresponds to the ions and the other one is for the neutrals. Both modes are reduced with increasing the collision rate of the particles and the ionization fraction. We show that if the two-fluid nature is considered, RT instability would not be suppressed and also show that the growth time of the perturbations increases. As an example, we apply our analysis to the Local clouds which seems to have arisen because of the RT instability. Assuming that the clouds are partially ionized, we find that the growth rate of these clouds increases in comparison to a fully ionized case.
we examine the effect of thermal conduction on the observational properties of a super critical hot magnetized flow. We obtained self-similar solution of a magnetized disc when the thermal conduction plays an important role. Follow of our first paper (Ghasemnezhad et al. 2012 (hereafter GKA12)) we have extended our solution on the observational appearance of the disc to show how physical condition such as thermal conduction, viscosity, and advection will change the observed luminosity of the disc, Continuous spectra and surface temperature of such discs was plotted. We apply the present model to black-hole X-ray binary LMC X-3 and narrow-line seyfert 1 galaxies, which are supposed to be under critical accretion rate. Our results show clearly that the surface temperature is strongly depends on the thermal conduction, the magnetic field and advection parameter. However we see that thermal conduction acts to oppose the temperature gradient as we expect and observed luminosity of the disc will reduce when thermal conduction is high. We have shown that in this model the spectra of critical accretion flows strongly depends on the inclination angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.