Bearings are vital elements in rotating machinery. Despite their wide use, bearings are prone to failures that can result in irreversible damage. The detection of bearing damage in its incipient stages and monitoring of the fault severity are required for the optimisation of maintenance decisions. The classical methods for bearing monitoring are based on an analysis of the vibration signals usually captured by an accelerometer located on the machine case. Two difficulties arise when diagnosing bearings via vibrations: the effect of the transmission path to the sensor distorts the signals and the low signal-to-noise ratio characterising the weak bearing signals in the presence of the accompanying strong surrounding noise originating from the vibrations of other rotating components in the machine. The goal of the presented work was to study the possibility of overcoming the current problems of bearing prognostics by locating the sensors as close as possible to the bearing. Two types of sensor were selected: micro electro-mechanical system (MEMS) accelerometers and optical fibres to measure strain. Due to their small dimensions, these sensors can be embedded into the system close to, or even inside, the bearing. The measured signals from bearings with various spall widths show an improved signal-to-noise ratio, demonstrating the power of these two local sensing methodologies. By avoiding transmission path effects, the results show the clear detection of early defects. The results of this study open new options for monitoring and detecting the early signs of failure in critical bearings.
Bearings are vital elements in rotating machinery. Failures in bearings can result in irreversible damage. Therefore, early detection of bearing damage and monitoring of fault severity are necessary for optimization of maintenance decisions.The classical methods for bearing monitoring are based on analysis of vibration signals captured by accelerometers, usually located on the machine case. Two difficulties arise when diagnosing bearings in that manner. The first difficulty is the distortion of the signals due to the transmission path to the sensor. The second difficulty is the characteristic low signal to noise ratio, resulting from the weak bearing signals in the presence of the strong surrounding noise, originating from the vibrations of other rotating components in the machine.The goal of the present study was to research the possibility of using an optical fiber sensor of the Fiber Bragg Grating (FBG) type, which senses strain and temperature changes, for bearing diagnostics. Due to its small dimensions, this sensor can be embedded close to, or even inside the bearing, suggesting a possible solution to the two difficulties which were discussed above.The results of this study open new options to monitor and detect early failure signs in critical bearings. FBG-based diagnostics was found applicable and useful for detecting damage in bearings.The analysis of signals measured on bearings with various widths of spall, demonstrates the power of the FBG-based local sensing methodology. In addition, the study also aimed to understand the capabilities and limitations of FBG for wideband sensing, and the effect of different sensor attaching techniques on the signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.