Abstract. We present an update of the Catalog of High Angular Resolution Measurements (CHARM, Richichi & Percheron 2002, A&A, 386, 492), which includes results available until July 2004. CHARM2 is a compilation of direct measurements by high angular resolution methods, as well as indirect estimates of stellar diameters. Its main goal is to provide a reference list of sources which can be used for calibration and verification observations with long-baseline optical and near-IR interferometers. Single and binary stars are included, as are complex objects from circumstellar shells to extragalactic sources. The present update provides an increase of almost a factor of two over the previous edition. Additionally, it includes several corrections and improvements, as well as a cross-check with the valuable public release observations of the ESO Very Large Telescope Interferometer (VLTI). A total of 8231 entries for 3238 unique sources are now present in CHARM2. This represents an increase of a factor of 3.4 and 2.0, respectively, over the contents of the previous version of CHARM.
Abstract.We have undertaken a thorough dynamical investigation of five extrasolar planetary systems using extensive numerical experiments. The systems Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of whether they could host terrestrial-like planets in their habitable zones (HZ). First we investigated the mean motion resonances between fictitious terrestrial planets and the existing gas giants in these five extrasolar systems. Then a fine grid of initial conditions for a potential terrestrial planet within the HZ was chosen for each system, from which the stability of orbits was then assessed by direct integrations over a time interval of 1 million years. For each of the five systems the 2-dimensional grid of initial conditions contained 80 eccentricity points for the Jovian planet and up to 160 semimajor axis points for the fictitious planet. The computations were carried out using a Lie-series integration method with an adaptive step size control. This integration method achieves machine precision accuracy in a highly efficient and robust way, requiring no special adjustments when the orbits have large eccentricities. The stability of orbits was examined with a determination of the Rényi entropy, estimated from recurrence plots, and with a more straightforward method based on the maximum eccentricity achieved by the planet over the 1 million year integration. Additionally, the eccentricity is an indication of the habitability of a terrestrial planet in the HZ; any value of e > 0.2 produces a significant temperature difference on a planet's surface between apoapse and periapse. The results for possible stable orbits for terrestrial planets in habitable zones for the five systems are: for Gl 777 A nearly the entire HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive for a sufficiently long time, while for Gl 614 our results exclude terrestrial planets moving in stable orbits within the HZ. Studies such as this one are of primary interest to future space missions dedicated to finding habitable terrestrial planets in other stellar systems. Assessing the likelihood of other habitable planets, and more generally the possibility of other life, is the central question of astrobiology today. Our investigation indicates that, from the dynamical point of view, habitable terrestrial planets seem to be compatible with many of the currently discovered extrasolar systems. they could host additional terrestrial-like planets in their habitable zones (=HZ).Since the discovery of the first extrasolar planetary system about 10 years ago (Mayor & Queloz 1995), a major point of dynamical investigations has been the determination of stable regions in extrasolar planetary systems, where additional planets on stable orbits could exist. Today we know about 105 planetary systems with 120 planets, where 13 systems have more than one planet (both confirmed and unconfirmed cases).Article published by EDP Sciences and available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.