The adulteration of high price oil such as essential oil of Curcuma mangga Val. (EOCM) with lower price oil is common to get economical profit. This study was to investigate the authentication of EOCM toward candlenut oil (CNO) using FTIR spectroscopy combined with multivariate calibration and discriminant analysis. The selection of CNO as adulterant oil model was due to its close similarity to EOCM in terms of FTIR spectra. Besides, EOCM has similar color with CNO, therefore, CNO is potential adulterant toward EOCM. Two multivariate calibrations of partial least square regression (PLSR) and principle component regression (PCR) along with FTIR spectra (normal versus derivatization) were optimized to get prediction models for quantification. The results showed that the combination of PLSR and normal FTIR spectra at optimized wavenumbers of 1614-1068 cm-1 was capable of predicting the levels of EOCM adulterated with CNO. Discriminant analysis was also success to differentiate the classification of EOCM and EOCM adulterated with CNO with accuracy levels of 100%. Using FTIR spectroscopy for oil authentication is rapid, simple without any chemicals, solvents, and sample preparation so that this technique is considered as a green analytical method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.