Abstract-We have done a detailed petrologic study of the angrite, D'Orbigny, and geochemical study of it and Sahara 99555. D'Orbigny is an igneous-textured rock co m posed of Ca-rich olivine, Al-Tidiopside-hedenbergite, subcalcic kirschsteinite, two generations of hercynitic spinel and anorthite, with the mesostasis phases ulvospinel, Ca-phosphate, a silico-phosphate phase and Fe-sulfide. We report an unknown Fe-Ca-Al-Ti-silicate phase in the mesostasis not previously found in angrites. One hercynitic spinel is a large, rounded homogeneous grain of a different composition than the euhedral and zoned grains. We believe the former is a xenocryst, the first such described from angrites.The mafic phases are highly zoned; mg# of cores for olivine are -64, and for clinopyroxene -58, and both are zoned to Mg-free rims . The Ca content of olivine increases with decreasing mg#, until olivine with -2 0 mol% C a is overgrown by subcalcic kirschsteinite with about 30-35 mol% Ca. Detailed zoning sequences in olivine-subcalcic kirschsteinite and clinopyroxene show slight compositional reversals . There is no mineralogic control that can explain these reversals, and we believe they were likely caused by local additions of more primitive melt during cry sta llization of D'Orbigny. D'Orbigny is the most ferroan angrite with a bulk rock mg# of32. Compositionally, it is virtually identical to Sahara 99555; they are the first set of compositionally identical angrites. Comparison with the other angrites shows that there is no simple petrogenetic sequence, partial melting with or without fractional crystallization, that can explain the angrite suite. Angra dos Reis remains an anomalous angrite.Angrites show no evidence for the brecciation, shock, impact metamorphism, or thermal metamorphism that affected the howardite, eu crite, diogenite (HED) suite and ordinary chondrites. This suggests that the angrite parent body may have followed a fundamentally different evolutionary path than did these other parent bodies.
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. CitationHamilton, V.E., et al., "Evidence for widespread hydrated minerals on asteroid (101955) Bennu." Nature astronomy 3, 4 (2019): p.
Christensen, P. R.; Drouet d'Aubigny, C. Y.; Hamilton, V. E.; Reuter, D. C.; Rizk, B.; Simon, A. A.; Asphaug, E.; Bandfield, J. L.; Barnouin, O. S.; Barucci, M. A.; Bierhaus, E. B.; Binzel, R. P.; Bottke, W. F.; Bowles, N. E.; Campins, H.; Clark, B. C.; Clark, B. E.; Connolly, H. C.; Daly, M. G.; Leon, J. de; Delbo', M.; Deshapriya, J. D. P.; Elder, C. M.; Fornasier, S.; Hergenrother, C. W.; Howell, E. S.; Jawin, E. R.; Kaplan, H. H.; Kareta, T. R.; Le Corre, L.; Li, J.-Y.; Licandro, J.; Lim, L. F.; Michel, P.; Molaro, J.; Nolan, M. C.; Pajola, M.; Popescu, M.; Garcia, J. L. Rizos; Ryan, A.; Schwartz, S. R.; Shultz, N.; Siegler, M. A.; Smith, P. H.; Tatsumi, E.; Thomas, C. A.; Walsh, K. J.; Wolner, C. W. V.; Zou, X.-D. and Lauretta, D. S. (2019). Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 3 pp. 341-351. For guidance on citations see FAQs.Length of main text: 2956 words Length of methods: 3605 words Length of legends: 565 words Number of references: 53 main text, 69 including methods and supplementary information (refs 67 to 69 are cited in the SI only) , we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micron-scale particles).
The Open University's repository of research publications and other research outputs The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.