There is an urgent need for the identification of Alzheimer's disease (AD) biomarkers. Studies have now suggested the promising use of associations with blood metabolites as functional intermediate phenotypes in biomedical and pharmaceutical research. The aim of this study was to use lipidomics to identify a battery of plasma metabolite molecules that could predict AD patients from controls. We performed a comprehensive untargeted lipidomic analysis, using ultra-performance liquid chromatography/mass spectrometry on plasma samples from 35 AD patients, 40 elderly controls and 48 individuals with mild cognitive impairment (MCI) and used multivariate analysis methods to identify metabolites associated with AD status. A combination of 10 metabolites could discriminate AD patients from controls with 79.2% accuracy (81.8% sensitivity, 76.9% specificity and an area under curve of 0.792) in a novel test set. Six of the metabolites were identified as long chain cholesteryl esters (ChEs) and were reduced in AD (ChE 32:0, odds ratio (OR)=0.237, 95% confidence interval (CI)=0.10–0.48, P=4.19E−04; ChE 34:0, OR=0.152, 95% CI=0.05–0.37, P=2.90E−04; ChE 34:6, OR=0.126, 95% CI=0.03–0.35, P=5.40E−04; ChE 32:4, OR=0.056, 95% CI=0.01–0.24, P=6.56E−04 and ChE 33:6, OR=0.205, 95% CI=0.06–0.50, P=2.21E−03, per (log2) metabolite unit). The levels of these metabolites followed the trend control>MCI>AD. We, additionally, found no association between cholesterol, the precursor of ChE and AD. This study identified new ChE molecules, involved in cholesterol metabolism, implicated in AD, which may help identify new therapeutic targets; although, these findings need to be replicated in larger well-phenotyped cohorts.
We believe this is the first study to investigate associations between blood metabolites and neocortical amyloid burden (NAB) in the search for a blood-based biomarker for Alzheimer's disease (AD). Further, we present the first multi-modal analysis of blood markers in this field. We used blood plasma samples from 91 subjects enrolled in the University of California, San Francisco Alzheimer's Disease Research Centre. Non-targeted metabolomic analysis was used to look for associations with NAB using both single and multiple metabolic feature models. Five metabolic features identified subjects with high NAB, with 72% accuracy. We were able to putatively identify four metabolites from this panel and improve the model further by adding fibrinogen gamma chain protein measures (accuracy=79%). One of the five metabolic features was studied in the Alzheimer's Disease Neuroimaging Initiative cohort, but results were inconclusive. If replicated in larger, independent studies, these metabolic features and proteins could form the basis of a blood test with potential for enrichment of amyloid pathology in anti-amyloid trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.