--In this work we present a 100-MESFET oscillator which gives 21 W of CW effective radiated power (ERP) with a 16 dB directivity and a 20% dc to RF conversion effciency at 5 GHz. The oscillator is a planar grid structure periodically loaded with transistors. The grid radiates and the devices combine quasi-optically and lock to each other. The oscillator can also be quasi-optically iqjection-locked to an external signal. The planar grid structure is very simple. All of the devices share the same bias, and they can be power and frequency tuned with a mirror behind the grid or dielectric slabs in front of it. An equivalent circuit for an infinite grid predicts the mirror frequency tuning. The planar property of the oscillator offers the possibility of a wafer-scale monolithically integrated source. Thousands of active solid-state devices can potentially be integrated in a high-power source for microwave or millimeter-wave applications.
The convectively driven transport of soluble trace gases from the lower to the upper troposphere can occur on timescales of less than an hour, and recent studies suggest that microphysical scavenging is the dominant removal process of tropospheric ozone precursors. We examine the processes responsible for vertical transport, entrainment, and scavenging of soluble ozone precursors (formaldehyde and peroxides) for midlatitude convective storms sampled on 2 September 2013 during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) study. Cloud‐resolving simulations using the Weather Research and Forecasting with Chemistry model combined with aircraft measurements were performed to understand the effect of entrainment, scavenging efficiency (SE), and ice physics processes on these trace gases. Analysis of the observations revealed that the SEs of formaldehyde (43–53%) and hydrogen peroxide (~80–90%) were consistent between SEAC4RS storms and the severe convection observed during the Deep Convective Clouds and Chemistry Experiment (DC3) campaign. However, methyl hydrogen peroxide SE was generally smaller in the SEAC4RS storms (4%–27%) compared to DC3 convection. Predicted ice retention factors exhibit different values for some species compared to DC3, and we attribute these differences to variations in net precipitation production. The analyses show that much larger production of precipitation between condensation and freezing levels for DC3 severe convection compared to smaller SEAC4RS storms is largely responsible for the lower amount of soluble gases transported to colder temperatures, reducing the amount of soluble gases which eventually interact with cloud ice particles.
Abstract-A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential-pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBT's and free space. Two independent measurements, one with focusing lenses, the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return loss were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multi-mode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30" were amplified with less than a 3-dB drop in gain.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.