SummaryThe purpose of our study was to investigate the anatomical variations of the extrahepatic arterial structures of the liver with particular attention to rare variations and their potential impact on liver surgery. A total of 50 human abdominal organ complexes were used to prepare corrosion casts. A multicomponent resin mixture was injected into the abdominal aorta. The portal vein was injected with a different colored resin in 16 cases. Digestion of soft tissues was achieved using cc. KOH solution at 60-65°C. Extrahepatic arterial variations were classified according to Michels. All specimens underwent 3D volumetric CT reconstruction. Normal anatomy was seen in 42% of cases, and variants were seen in the other 58%. No Michels type VI or X variations were present; however, in 18% of cases the extrahepatic arterial anatomy did not fit into Michels' classification. We report four new extrahepatic arterial variations. In contrast to the available data, normal anatomy was found much less frequently, whereas the prevalence of unclassified arterial variations was higher. We detected four previously unknown variations. Our data may contribute to the reduction of complications during surgical and radiological interventions in the upper abdomen.
Tourniquet application proved to be capable of inducing absolute lower limb ischemia, in contrast to infrarenal aortic ligation, where a rich collateral system is considered to help mitigate the injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.