& Key message There is no one-size-fits-all way to successfully implement forest landscape restoration (FLR). Complex socio-ecological systems present challenges and opportunities that can best be met with a systematic framework for designing, planning, steering, and monitoring FLR projects to meet diverse needs. Project cycle management is an iterative, adaptive, hierarchical framework with recurring consultations among stakeholders that can enhance the likelihood of FLR success.
Research Highlights: The global Forest Landscape Restoration ambitions could be impaired by projects that ignore key principles such as the engagement of local communities in decision making and implementation, equitable benefit sharing, and monitoring for adaptive management. This entails the danger of continued degradation, disappointed local stakeholders, and ultimately, project failure. Other projects face technical problems related to tree establishment and nursery production. Background and Objectives: There are high hopes for Forest and Landscape Restoration to regain ecosystem integrity and enhance human well-being in deforested and degraded areas. We highlight various problems and success factors experienced during project implementation on a global scale. Materials and Methods: We use data from a global online survey to identify common obstacles and success factors for the implementation of forest restoration. Results: While the majority of respondents reported successful projects, others indicate drastic problems and failed projects. Major obstacles to forest restoration experienced by survey respondents were a lack of local stakeholder involvement and a mismatch between goals of local communities and restoration managers, as well as environmental, anthropogenic, and technical barriers to tree regeneration. Conclusions: When local communities, their goals, and needs are disregarded in project planning and implementation, as reported from various cases in our survey and the limited available literature, there is a risk of project failure. Failed projects and disappointed stakeholders, as well as discouraged funders and policy-makers, could lessen the momentum of global forest restoration ambitions. Adhering to key principles of Forest and Landscape Restoration can promote much-needed community support, with the potential to overcome barriers to forest regeneration and enable communities for the protection, management, and monitoring of the restored forests beyond the limited project and funding periods. Research is needed to gain a better understanding of the perception of local communities towards restoration activities. Further studies on the implementation of forest restoration at the intersection of environmental factors, socioeconomic conditions, forest regeneration/silviculture, and nursery production are needed.
Diurnal courses of net photosynthesis, transpiration and water potential of leaves of ten woody species from the natural lowland dipterocarp forests in Sabah (North Borneo, Malaysia) and one exotic tree species were studied in the field. The indigenous species represent different ecological niches and successional stages in the various layers of the dipterocarp forest, such as pioneers, trees of the understorey or main canopy and emergents. Diurnal changes in CO 2 exchange and transpiration reflected primarily differences in irradiance. The diurnal courses of water potential mainly tracked the rate of transpiratory water loss. Light-dependency describes most of the diurnal variations of leaves' gas exchange. Light response curves of net photosynthesis of the investigated species of the Dipterocapaceae were almost equal (light saturated assimilation rate, A max : 5.0-7.2 µmol CO 2 m -2 s -1 ), while those of the other species exhibited remarkable differences (A max : 5.5-14.2 µmol CO 2 m -2 s -1 ). Leaf area, chlorophyll content and specific leaf dry weight as the reference parameters for assimilation gave a general ranking of the A max , which is highest for the pioneering species, less for the understorey trees and lowest for emergents. Light compensation points and light saturation of net photosynthesis were attained mainly between 6 and 9 µmol photons m -2 s -1 and between 230 and 534 µmol photons m -2 s -1 , respectively, but were higher for pioneering species. Photosynthetic performance may be a diagnostic feature of the successional and ecological status of species, i.e. to character-ize pioneering species from understorey species or from emergents of the dipterocarp forest.& k w d : Key words Lowland rainforest · Dipterocarpaceae · Net photosynthesis · Irradiance · Water potential& b d y :C. Eschenbach ( u ) Projektzentrum Ökosystemforschung,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.