[1] NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45°square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front-and rear-facing set of stereo pairs, each with a 124°square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45°square FOV and will return images with spatial resolutions of $4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 Â 1024 pixel detectors.
The majorization relation has been shown to be useful in classifying which transformations of jointly held quantum states are possible using local operations and classical communication. In some cases, a direct transformation between two states is not possible, but it becomes possible in the presence of another state ͑known as a catalyst͒; this situation is described mathematically by the trumping relation, an extension of majorization. The structure of the trumping relation is not nearly as well understood as that of majorization. We give an introduction to this subject and derive some results. Most notably, we show that the dimension of the required catalyst is, in general, unbounded; there is no integer k such that it suffices to consider catalysts of dimension k or less in determining which states can be catalyzed into a given state. We also show that almost all bipartite entangled states are potentially useful as catalysts.
The Earth Surface Mineral Dust Source Investigation, EMIT, is planned to operate from the International Space Station starting no earlier than the fall of 2021. EMIT will use visible to short wavelength infrared imaging spectroscopy to determine the mineral composition of the arid land dust source regions of the Earth to advance our knowledge of the radiative forcing effect of these aerosols. Mineral dust emitted into the atmosphere under high wind conditions is an element of the Earth system with many impacts to the Earth's energy balance, atmosphere, surface, and oceans. The Earth's mineral dust cycle with source, transport, and deposition phases are studied with advanced Earth System Models. Because the chemical composition, optical and surface properties of soil particles vary strongly with the mineral composition of the source, these models require knowledge of surface soil mineral dust source composition to accurately understand dust impacts on the Earth system now and in the future. At present, compositional knowledge of the Earth's mineral dust source regions from existing data sets is uncertain as a result of limited measurements. EMIT will use spectroscopically-derived surface mineral composition to update the prescribed boundary conditions for state-of-the-art Earth System Models. The EMIT-initialized models will be used to investigate the impact of direct radiative forcing in the Earth system that depends strongly on the composition of the mineral dust aerosols emitted into the atmosphere. These new measurements and related products will be used to address the EMIT science objectives and made available to the science community for additional investigations. An overview of the EMIT science, development, and mission is presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.