The percolation of fluids is of utmost relevance for the utilization of underground resources; however, the location and occurrence of fractures are not always known, and important characteristics of faults, such as stress state and permeability, are commonly uncertain. Using a case study at the Brady’s geothermal field in Nevada (USA), we demonstrate how permeable fractures can be identified and assessed by combining fault stress models with measurements of diffuse degassing and emanations at Earth’s surface. Areas of maximum gas emissions and emanations correspond to fault segments with increased slip and dilation tendency, and represent a fingerprint of the geothermal system at depth. Thus, linking gas fluxes with fault stress models serves as a measure of the connectivity between surface and subsurface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.