Ultrasonic speed, u, and density, ρ, have been measured in binary liquid mixtures of cyclohexanone with the isomers of butanol (n-butanol, sec-butanol, and tert-butanol) at 308.15 K over the entire range of composition. Molar volume (Vm), adiabatic compressibility (ks), intermolecular free length (Lf), acoustic impedance (z), and their excess/deviation along with Δu have been calculated from the experimental data. These values have been fitted to Redlich-Kister type polynomial equation. Positive values of VmE, Δks, LfE and negative values of zE, Δu have been observed for all the liquid mixtures indicating the existence of weak interactions between components. Rupture of H-bond or reduction in H-bond strength of isomers of butanol or breaking of the structure of one or both of the components in a solution causes the existence of dispersions in the present investigated binary mixtures. The data obtained from V-m,1, V-m,2, and excess partial molar volumes V-m, 1E, V-m, 2E, reflects the inferences drawn from VmE. Furthermore, FTIR spectra support the conclusions drawn from excess/deviation properties. The measured values of ultrasonic speed for all the investigated mixtures have been compared with the theoretically estimated values using empirical relations such as, Nomoto, Van Dael and Vangeels, Impedance and Rao specific sound speed.