Paper presents the results of studies on primary crystallization and wear resistance of high chromium cast iron inoculated with ferrotitanium intended for work in abrasive conditions. Primary crystallization was examined with use of TDA method, wear tests of the samples were conducted using the modified pin-on-disk method.
This paper presents the effect of carburizing materials on cast iron solidification and crystallization. The studies consisted of cast iron preparation from steel scrap and different carburizers. For a comparison, pig iron was exclusively used in a solid charge. Crystallization analysis revealed the influence of the carburizer material on the crystallization curves as well as differences in the solidification paths of cast iron prepared with the use of different charge materials. The carburizersÕ influence on undercooling during the eutectic crystallization process was analyzed. The lowest undercooling rate was recorded for the melt with pig iron, then for synthetic graphite, natural graphite, anthracite, and petroleum coke (the highest undercooling rate). So a hypothesis was formulated that eutectic cells are created most effectively with the presence of carbon from pig iron (the highest nucleation potential), and then for the graphite materials (crystallographic similarity with the carbon precipitation in the cast iron). The most difficult eutectic crystallization is for anthracite and petroleum coke (higher undercooling is necessary). This knowledge can be crucial when the foundry plant is going to change the solid charge composition replacing the pig iron by steel scrap and the recarburization process.
The results of research on stereological parameters of carbides in modified hypoeutectic chromium cast iron were shown in the paper. The effect of distance the casting heat centre of casting to the carbide phase morphology was examined. The samples for metallographic examination were taken from various locations of the model casting prepared in a special tester. This model casting was designed to simulate the solidification of heavy castings. Using the proposed methodology the relation of the distance from the model mould and the size, perimeter, length, width and the shape factor of carbides was examined. During the analysis, the values of stereological parameters of carbides changed on various sections of the model casting.
Metal matrix composite (MMC) surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.The surface layers having the WC fraction up to 71 vol% and an average hardness of 1300 HV were produced. The thickness of these layers was up to 650 μm. The addition of a titanium powder in the molten pool increased the wettability of WC particles by the liquid metal in the molten pool increasing the WC fraction. Additionally, the presence of titanium resulted in the precipitation of the (Ti,W)C phase, which significantly reduced the fraction of W-rich complex carbides and improved a structural integrity of the layers.
In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.