Classically, the grain size of soil and sediment samples is determined by the sieve method for the coarse fractions and by the pipette method, based on the ‘Stokes’ sedimentation rates, for the fine fractions. Results from the two methods are compared with results from laser diffraction size analysis, which is based on the forward scattering of monochromatic coherent light. From a point of view of laboratory efficiency, the laser sizing technique is far superior. Accuracy and reproducibility are shown by measurements on certified materials. It appears that laser grain size measurements of certified materials correspond very well with the certificated measurements. Tests were also done on a set of randomly selected sediments of fluvial, aeolian and lacustrine origin. Except for the (<2 μm) clay fraction, there is a coarsening of the mean diameter of one to two size classes (0.25 ɛ), caused by the non‐sphericity of the particles. The platy form of the clay particles induces considerable differences (eight size classes) between pipette and laser measurements: the <2 μm grain size, defined by the pipette method corresponds with a grain size of 8 μm defined by the Laser Particle Sizer for the studied sediments. Using a higher grain size level for the clay fraction, when laser analysis is applied, enables workers in the geological and environmental field to compare classical pipette analysis with a laser sizing technique.
Uplift of the Tibetan Plateau and the Himalayas since the onset of the Indo-Asia collision is held responsible for Asian aridifi cation and monsoon intensifi cation, but may also have gradually cooled global climate, leading to the 34 Ma Eocene-Oligocene transition. To unravel the interplay between Tibetan uplift and global climate, proxy records of Asian paleoenvironments constrained by accurate age models are needed for the Paleogene Period. Here we report the 38 Ma appearance of high-altitude vegetation recovered from palynological assemblages in precisely dated lacustrine sediments from the Xining Basin of the northeastern Tibetan Plateau region. This result confi rms previous evidence for important regional uplift in the central and northern Tibetan Plateau regions during the early stage of the Indo-Asia collision. This is consistent with the idea that the associated increase in rock weathering and erosion contributed to lowering of atmospheric CO 2 , leading to the Eocene-Oligocene transition.
Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N) in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP%) into mean annual temperature (MAT) changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity) paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles
Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van de Plassche, O., Makaske, B., Hoek, W. Z., Konert, M., & van der Plicht, J. (2010). Mid-Holocene water-level changes in the lower Rhine-Meuse delta (western Netherlands): implications for the reconstruction of relative mean sea-level rise, palaeoriver-gradients and coastal evolution. Netherlands journal of geosciences-Geologie en mijnbouw, 89(1), 3-20. CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-04-2019 IntroductionThe extensive occurrence, in the lower Rhine-Meuse delta, of Late Glacial aeolian dunes that are largely or completely covered by Holocene fresh-and brackish-water (tidal) deposits has played, and continues to play, a significant role in the study of changes in relative sea level, intra-coastal tidal range, river gradient, palaeoecological and palaeodepositional environments, human occupation, and differential land-level movements (Jelgersma, 1961;Louwe Kooijmans, 1974;Van der Woude, 1983;Van de Plassche, 1980a, 1982, 1984, 1995a, 1995bVan Dijk et al., 1991;Törnqvist et al., 1998;Cohen, 2003Cohen, , 2005Berendsen et al., 2007). Moderate to steeply sloping flanks of peat-covered aeolian dunes offer the possibility of obtaining suites of local waterlevel index points that are virtually free of compaction effects. Furthermore, the relatively small size of the dunes and dune AbstractWe present a revised relative mean sea-level (MSL) curve for the Rhine-Meuse delta, western Netherlands, for the period 7900-5300 cal yr BP. The revision is based on a series of new and previously unpublished local groundwater-level index data from buried Late Glacial aeolian dunes in the lower Rhine-Meuse delta, and reinterpretation of existing data.The new index data consist of (AMS and conventional) radiocarbon dates of samples, collected from the base of peat formed on dune slopes, near Vlaardingen (21 index points), Hillegersberg (one index point), and Hardinxveld-Giessendam (10 index points). The Vlaardingen data represent the coast-nearest Rhine-Meuse delta local water-level record, which therefore is highly indicative for sea-level change. Pollen and macrofossil analysis, and dating of paired samples was carried out to assess the reliability of the groundwater-level index data.The revision of the MSL curve involves: (1) a significant (0 to >1 m) upward adjustment for the period 7900-7300 cal ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.