We studied changes of morphology and magnetic properties of Co/Cu multilayered nanowires, electrodeposited in polycarbonate membranes, as a function of Cu layer thickness. The morphology and structure of wire assemblies with an average diameter of 200 nm and length of 10 µm, investigated by X-ray diffraction and scanning electron microscopy techniques, revealed polycrystalline structure of Cu and Co layers with smooth lateral surface of nanowires. Overdeposited nanowires created caps which showed flower-like dendrites with shape changing as a function of Cu thickness and electrodeposition parameters. Chemical composition of Co and Cu nanowires analysed by energy dispersive spectroscopy and proton induced X-ray emission showed Cu nanowires free from Co atoms while in Co nanowires, Cu contamination with concentration below 10% was observed. The oxidation traces observed in single-component Cu nanowires did not appear in multilayered nanowires. Magnetic measurements indicated easy axis of magnetization in membrane plane for nanowires with Cu thickness smaller than 20 nm, whereas for larger Cu thicknesses isotropic orientation of magnetization was observed. The presence of Cu atoms in single-component Co nanowires resulted in the appearance of magnetic anisotropy with easy axis along nanowire axis and the increase of coercivity value.
Preliminary studies on the sediments collected from water meters of Krakow water supply system were performed in the cooperation with the Municipal Water Supply and Sewage. Creation and deposition of sediments on the measuring devices installed in the water supply system is a serious technological and economical problem for water companies, defectively operating for this reason water meters must be replaced. It is evident that knowledge of the chemical and phase composition of sediments is an important step towards resolving the problem of impurities in water supply systems. Four different samples of sediments, coming from water meters, were investigated using the proton-induced X-ray emission, the X-ray diffraction, the Fourier transform infrared and Raman spectroscopy. The X-ray methods revealed presence of amorphous and fine-crystalline phases as well as high content of iron-based compounds. As a crystalline phase, the most frequently appeared: goethite, lepidocrocite, iron oxides (hematite, maghemite, magnetite), calcium carbonate, and quartz. In one of the samples, the nanocrystalline phase was found and identified as hydrous iron oxyhydroxide ferrihydrite. Vibrational spectroscopy methods confirmed the composition of crystalline phases as well as enabled to estimate the abundance of amorphous phase in samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.