This study was designed to test the hypothesis that the spectral composition of incident radiation, as defined by the relative proportions of blue (B; λ max = 455 nm) and red (R; λ max = 625 nm) photons, can affect photosynthetic induction, since B photons stimulate stomatal opening and are more effectively absorbed by leaves than R photons. Different stages of photosynthetic induction, primarily determined by the photo-modulation of Rubisco activity and stomata opening, were investigated in dark-adapted leaves of Fagus sylvatica transferred to saturating irradiance [800µmol(photon) m -2 s -1 ] at B/R ratios of 1/3, 1/1, or 3/1.In agreement with our hypothesis, photosynthesis was induced faster by irradiance with a high B/R ratio (3/1); as demontrated by a higher IS 60 (induction state 60 s after leaf illumination) and lower T 90 (the time period required to reach 90 % of maximum steady-state photosynthesis). However, there were no differences in induction between leaves receiving equal (1/1) and low (1/3) B/R ratios. Electron transport was highly sensitive to radiation quality, exhibiting faster induction kinetics with increasing B/R ratio. Such stimulation of carbon-assimilatory processes corresponds with faster activation of Rubisco and lower non-photochemical quenching (NPQ) as the proportion of B photons is increased. In contrast, the kinetics of stomatal opening was independent of the spectral composition of incoming radiation. Since slightly higher absorption efficiency of high B/R radiation does not fully explain the changes in induction kinetics, the other possible mechanisms contributing to the stimulation of electron transport and Rubisco activity are discussed.Additional keywords: blue/red ratio, electron transport, non-photochemical quenching, radiation quality, Rubisco activation, transient limitations of photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.