Next-to-leading-order QCD analyses of the ZEUS data on deep inelastic scattering together with fixed-target data have been performed, from which the gluon and quark densities of the proton and the value of the strong coupling constant ␣ s (M Z ) were extracted. The study includes a full treatment of the experimental systematic uncertainties including point-to-point correlations. The resulting uncertainties in the parton density functions are presented. A combined fit for ␣ s (M Z ) and the gluon and quark densities yields a value for ␣ s (M Z ) in agreement with the world average. The parton density functions derived from ZEUS data alone indicate the importance of HERA data in determining the sea quark and gluon distributions at low x. The limits of applicability of the theoretical formalism have been explored by comparing the fit predictions to ZEUS data at very low Q 2 .
The production of neutrons carrying at least 20% of the proton beam energy (x L > 0.2) in e + p collisions has been studied with the ZEUS detector at HERA for a wide range of Q 2 , the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, ep → e ′ Xn, is measured relative to the inclusive cross section, ep → e ′ X, thereby reducing the systematic uncertainties. For x L > 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the γp system. or 0.64 < x L < 0.82, the rate of neutrons is almost independent of the Bjorken scaling variable x and Q 2 . However, at lower and higher x L values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, F
A complete set of existing data on hot fusion reactions leading to synthesis of superheavy nuclei of Z =114-118, obtained in a series of experiments in Dubna and later in GSI Darmstadt and LBNL Berkeley, was analyzed in terms of a new angular-momentum dependent version of the fusionby-diffusion (FBD) model with fission barriers and ground-state masses taken from the Warsaw macroscopic-microscopic model (involving non-axial shapes) of Kowal et al. The only empirically adjustable parameter of the model, the injection-point distance (sinj), has been determined individually for all the reactions. Very regular systematics of this parameter have been established. The regularity of the obtained sinj systematics indirectly points at the internal consistency of the whole set of fission barriers used in the calculations. (In an attempt to fit the same set of data by using the alternative theoretical fission barriers of Möller et al. we did not obtain such a consistent result.) Having fitted all the experimental excitation functions for elements Z = 114-118, the FBD model was used to predict cross sections for synthesis of elements Z = 119 and 120. Regarding prospects to produce the new element Z = 119, our calculations prefer the 252 Es( 48 Ca,xn) 300−x 119 reaction, for which the synthesis cross section of about 0.2 pb in 4n channel at Ec.m. ≈ 220 MeV is expected. The most favorable reaction to synthesize the element Z = 120 turns out to be 249 Cf( 50 Ti,xn) 299−x 120, but the predicted cross section for this reaction is only 6 fb (for 3n and 4n channels).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.