We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25–100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm−2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (FexOy) and (Fe, Mg)Oy layer respective at Fe3O4–Fe and Fe–MgO interface. The high ion fluence of 3.8 × 1016 Kr cm−2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains FexOy -type composition at ion fluence large than 5.0 × 1016 Kr cm−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.