Phoma koolunga sp. nov. is described, having been isolated from ascochyta blight lesions on field pea (Pisum sativum) in South Australia. The species is described morphologically and sequences of the internal transcribed spacer region compared with those of the accepted pathogens causing ascochyta blight of field peas. P. koolunga was distinct from Mycosphaerella pinodes (anamorph: Ascochyta pinodes), Phoma medicaginis var. pinodella and Ascochyta pisi. Under controlled conditions the symptoms on pea seedlings caused by P. koolunga were indistinguishable from those caused by M. pinodes, other than a 24 h delay in disease development. Isolates of P. koolunga differed in the severity of disease caused on pea seedlings.
Anecdotal evidence identified a change in the reaction of the resistant lentil cv Nipper to ascochyta blight in South Australia in 2010 and subsequent seasons, leading to infection. This study investigated field reactions of lentil cultivars against Ascochyta lentis and the pathogenic variability of the A. lentis population in southern Australia on commonly grown cultivars and on parental germplasm used in the Australian lentil breeding program. Disease data recorded in agronomic and plant breeder field trials from 2005 to 2014 in southern Australia confirmed the change in reaction on the foliage of the previously resistant cvs Nipper and Northfield. Cultivar responses to seed staining from A. lentis did not change. The change in foliar response was confirmed in a series of controlled environment experiments using single, conidium-derived, isolates of A. lentis collected over different years and inoculated onto differential host sets. Specific isolate/cultivar interactions produced a significant range of disease reactions from high to low aggressiveness with a greater percentage of isolates more aggressive on cvs Nipper, Northfield and PBA Flash than previously detected. Specific isolates were tested against Australian lentil cultivars and breeding lines in controlled conditions, again verifying the aggressiveness on cv Nipper. A small percentage of isolates collected prior to the commercial release of cv Nipper were also able to infect this cultivar indicating a natural variability of the A. lentis population which subsequently may have been selected in response to high cropping intensity of cv Nipper. Spore release studies from naturally infested lentil stubbles collected from commercial crops also resulted in a high percentage of infection on the previously resistant cvs Nipper and Northfield. Less than 10% of the lesions developed on the resistant differentials ILL7537 and cv Indianhead. Pathogenic variation within the seasonal populations was not affected by the cultivar from which the stubble was sourced, further indicating a natural variability in aggressiveness. The impact of dominant cultivars in cropping systems and loss of effective disease resistance is discussed. Future studies are needed to determine if levels of aggressiveness among A. lentis isolates are increasing against a range of elite cultivars.
Davidson, J. A., Krysinska-Kaczmarek, M., Wilmshurst, C. J., McKay, A., Herdina, and Scott, E. S. 2011. Distribution and survival of ascochyta blight pathogens in field-pea-cropping soils of Australia. Plant Dis. 95:1217-1223.Phoma koolunga, Didymeila pinodes, and P. medicaginis var. pinodella were detected in DNA extracted from soil following field pea crops across four states in the southeastern and western regions of Australia. P. koolunga was commonly detected in soil from South Australia but rarely in other states whereas D. pinodes plus P. medicaginis var. pinodeila were widespread in all regions tested. The quantity of DNA of these pathogens detected in soils prior to growing field pea was positively correlated with ascochyta blight lesions on field pea subsequently grown in infested soil in a pot bioassay and also on field pea in naturally infected field trials. The quantity of DNA of the soilborne pathogens was greatest following a field pea crop and gradually decreased in the following 3 years. The DNA tests were used to quantify the DNA of the pathogens in field pea plants sampled from naturally infected field trials in South Australia over two seasons. The combined results of DNA tests and pathogen isolation from the plants indicated that P. koolunga and D. pinodes were equally responsible for the ascochyta blight symptoms in the diseased trials, while P. medicaginis var. pinodeila had a minor role in the disease complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.