S U M M A R YWe present an improved method for computing polarization attributes of particle motion from multicomponent seismic recordings in the time-frequency domain by using the continuous wavelet transform. This method is based on the analysis of the covariance matrix. We use an approximate analytical formula to compute the elements of the covariance matrix for a time window which is derived from an averaged instantaneous frequency of the multicomponent record. The length of the time-window is automatically and adaptively set to match the dominant period of the analysing wavelet at each time-frequency point. Then the eigenparameters are estimated for each time-frequency point without interpolation. With these key features, our method provides a suitable approach for polarization analysis of dispersive signals or overlapping seismic arrivals in multicomponent seismic data. For polarization analysis in the time domain, we show that the proposed method is consistent with existing polarization analysis methods. We apply the method to real data sets from exploration and earthquake seismology to illustrate some filtering applications and wave type characterizations.
Complex-trace analysis is the method of choice for analyzing polarized data. Because particle motion can be represented by instantaneous attributes that show distinct features for waves of different polarization characteristics, it can be used to separate and characterize these waves. Traditional methods of complex-trace analysis only give the instantaneous attributes as a function of time or frequency. However, for transient wave types or seismic events that overlap in time, an estimate of the polarization parameters requires analysis of the time-frequency dependence of these attributes. We propose a method to map instantaneous polarization attributes of seismic signals in the wavelet domain and explicitly relate these attributes with the wavelettransform coefficients of the analyzed signal. We compare our method with traditional complex-trace analysis using numerical examples. An advantage of our method is its possibility of performing the complete wave-mode separation/ filtering process in the wavelet domain and its ability to provide the frequency dependence of ellipticity, which contains important information on the subsurface structure. Furthermore, using 2-C synthetic and real seismic shot gathers, we show how to use the method to separate different wave types and identify zones of interfering wave modes.
In the estimate of dispersion with the help of wavelet analysis considerable emphasis has been put on the extraction of the group velocity using the modulus of the wavelet transform. In this paper we give an asymptotic expression of the full propagator in wavelet space that comprises the phase velocity as well. This operator establishes a relationship between the observed signals at two different stations during wave propagation in a dispersive and attenuating medium. Numerical and experimental examples are presented to show that the method accurately models seismic wave dispersion and attenuation.
S U M M A R YIn this paper, we propose a method of surface waves characterization based on the deformation of the wavelet transform of the analysed signal. An estimate of the phase velocity (the group velocity) and the attenuation coefficient is carried out using a model-based approach to determine the propagation operator in the wavelet domain, which depends nonlinearly on a set of unknown parameters. These parameters explicitly define the phase velocity, the group velocity and the attenuation. Under the assumption that the difference between waveforms observed at a couple of stations is solely due to the dispersion characteristics and the intrinsic attenuation of the medium, we then seek to find the set of unknown parameters of this model. Finding the model parameters turns out to be that of an optimization problem, which is solved through the minimization of an appropriately defined cost function. We show that, unlike time-frequency methods that exploit only the square modulus of the transform, we can achieve a complete characterization of surface waves in a dispersive and attenuating medium. Using both synthetic examples and experimental data, we also show that it is in principle possible to separate different modes in both the time domain and the frequency domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.