Vertebrates express two distinct families of SUMO proteins (SUMO1 and SUMO2/3) that serve distinct functions as posttranslational modifiers. Many proteins are modified specifically with SUMO1 or SUMO2/3, but the mechanisms for paralog selectivity are poorly understood. In a screen for SUMO2/3 binding proteins, we identified Ubiquitin Specific Protease 25 (USP25). USP25 turned out to also be a target for sumoylation, being more efficient with SUMO2/3. Sumoylation takes place within USP25's two ubiquitin interaction motifs (UIMs) that are required for efficient hydrolysis of ubiquitin chains. USP25 sumoylation impairs binding to and hydrolysis of ubiquitin chains. Both SUMO2/3-specific binding and sumoylation depend on a SUMO interaction motif (SIM/SBM). Seven amino acids in the SIM of USP25 are sufficient for SUMO2/3-specific binding and conjugation, even when taken out of structural context. One mechanism for paralog-specific sumoylation may, thus, involve SIM-dependent recruitment of SUMO1 or SUMO2/3 thioester-charged Ubc9 to targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.