Satellite Laser Ranging (SLR) data have been fundamental over the past three decades for the realization of the International Terrestrial Reference Frame (ITRF), which is based on an intertechnique combination of the geodetic solutions obtained from an intra-technique combination strategy performed at each IAG Technique Centre. This approach provides an opportunity to verify the internal consistency for each technique and a comparison of Analysis Center (AC) adherence to internal procedures and adopted models. The International Laser Ranging Service (ILRS) contribution is based on the current IERS Conventions 2010 as well as on internal ILRS ones, with a few documented deviations. The main concern in the case of SLR is monitoring systematic errors at individual stations, accounting for undocumented discontinuities, and improving the satellite target signature models. The SLR data re-analysis for ITRF2013 extends from 1983 to the end of 2013 and was carried out by 8 ACs according to the guidelines defined by the ILRS Analysis Working Group (AWG). These individual solutions have been then combined in the official solution by the ILRS Combination Center. This work allows point-wise monitoring of the quality of the SLR contribution and a thorough investigation on the time behaviour of its characteristic products, i.e. origin and scale of ITRF. The stability and consistency of these products are discussed for the individual and combined SLR time series. The critical issues from this analysis will be presented to highlight the key points that SLR should take into account to contribute in the best possible way to the present and future ITRF realizations.
The atmospheric mass density of the upper atmosphere from the spherical Starlette satellite's Precise Orbit Determination is first derived with Satellite Laser Ranging measurements at 815 to 1115 km during strong solar and geomagnetic activities. Starlette's orbit is determined using the improved orbit determination techniques combining optimum parameters with a precise empirical drag application to a gravity field. MSIS-86 and NRLMSISE-00 atmospheric density models are compared with the Starlette drag-derived atmospheric density of the upper atmosphere. It is found that the variation in the Starlette's drag coefficient above 800 km corresponds well with the level of geomagnetic activity. This represents that the satellite orbit is mainly perturbed by the Joule heating from geomagnetic activity at the upper atmosphere. This result concludes that MSIS empirical models strongly underestimate the mass density of the upper atmosphere as compared to the Starlette dragderived atmospheric density during the geomagnetic storms. We suggest that the atmospheric density models should be analyzed with higher altitude acceleration data for a better understanding of long-term solar and geomagnetic effects.
NASA's legacy Satellite Laser Ranging (SLR) network produces about one-third of the global SLR data to support space geodesy. This network of globally distributed stations has been using Time Interval Units (TIU) for range measurements for the last 25 + years. To improve the reliability of the SLR network and satisfy the need for stable millimeter precision data, a phased replacement of the TIUs in the network with picosecond-precise Event Timer Modules was initiated in 2015. This scheme allowed the time of flight and laser transmit epoch measurement to one picosecond resolution. For a network with global scientific impact, transitioning to a new data generation metrological scheme requires significant data scrutiny and long-term science data validation. Any long-term testing/measurement has the potential to interrupt the station's daily operational data flow to the International Laser Ranging Service (ILRS) as the station under test will have to put its test data into quarantine. We have demonstrated a very effective way to test and implement the new device without removing the old hardware and without the need for the orbit analysis. This operationally noninvasive scheme performed concurrent test measurements enabling uninterrupted operational data flow to the users, while allowing simultaneous test data capture for short-and long-term systematics and stability analysis. Extensive analysis of the test data was performed by the NASA SLR engineering team and the ILRS Analysis Standing Committee, to uncover biases and any dependencies on the satellite ranges (for nonlinear scale issues). Multi-ETM comparison was also performed at two of the SLR stations through the interchange of hardware to establish the inter-device range biases and stability. Such benchmarked hardware was subsequently sent to the remaining stations to allow traceability and normalize the network performance. The range bias intercomparison performed using the multiyear SLR data analysis agreed well with the engineering changes, thus validating the approach to flush out station-specific ranging systematics affecting precise orbit determination. Such an improvement and rebalancing of the current network will allow an orderly transition of the current NASA SLR network operating at a maximum rate of 10 Hz to the NASA next generation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.