Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
During the past century Einstein's theory of General Relativity gave rise to an experimental triumph; however, there are still aspects of this theory to be measured or more accurately tested. Today one of the main challenges in experimental gravitation, together with the direct detection of gravitational waves, is the accurate measurement of the gravito-I. Ciufolini ( )
In this paper are presented mathematical predictions on the evolution in time of the number of positive cases in Italy of the COVID-19 pandemic based on official data and on the use of a function of the type of a Gauss error function, with four parameters, as a cumulative distribution function. We have analyzed the available data for China and Italy. The evolution in time of the number of cumulative diagnosed positive cases of COVID-19 in China very well approximates a distribution of the type of the error function, that is, the integral of a normal, Gaussian distribution. We have then used such a function to study the potential evolution in time of the number of positive cases in Italy by performing a number of fits of the official data so far available. We then found a statistical prediction for the day in which the peak of the number of daily positive cases in Italy occurs, corresponding to the flex of the fit, that is, to the change in sign of its second derivative (i.e., the change from acceleration to deceleration), as well as of the day in which a substantial attenuation of such number of daily cases is reached. We have also analyzed the predictions of the cumulative number of fatalities in both China and Italy, obtaining consistent results. We have then performed 150 Monte Carlo simulations to have a more robust prediction of the day of the above-mentioned peak and of the day of the substantial decrease in the number of daily positive cases and fatalities. Although official data have been used, those predictions are obtained with a heuristic approach since they are based on a statistical approach and do not take into account either a number of relevant issues (such as number of daily nasopharyngeal swabs, medical, social distancing, virological and epidemiological) or models of contamination diffusion.
We present a test of general relativity, the measurement of the Earth’s dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure , where is the Earth’s dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.