Lightweight and strong structural materials attract much attention due to their strategic applications in sports, transportation, aerospace, and biomedical industries. Nacre exhibits high strength and toughness from the brick-and-mortar–like structure. Here, we present a route to build nacre-inspired hierarchical structures with complex three-dimensional (3D) shapes by electrically assisted 3D printing. Graphene nanoplatelets (GNs) are aligned by the electric field (433 V/cm) during 3D printing and act as bricks with the polymer matrix in between as mortar. The 3D-printed nacre with aligned GNs (2 weight %) shows lightweight property (1.06 g/cm3) while exhibiting comparable specific toughness and strength to the natural nacre. In addition, the 3D-printed lightweight smart armor with aligned GNs can sense its damage with a hesitated resistance change. This study highlights interesting possibilities for bioinspired structures, with integrated mechanical reinforcement and electrical self-sensing capabilities for biomedical applications, aerospace engineering, as well as military and sports armors.
The inherent fog collection mechanism used by the cactus gives inspirations for constructing energy‐efficient and environmentally friendly water collection devices. However, the related studies meet the bottleneck on improving the collection efficiency because it is hard to replicate real natural clusters of branched spines by traditional manufacturing methods. The immersed surface accumulation based 3D printing provides a tool to reproduce branched cactus spines, enabling the study of water collection of artificial spines with various designs. Here, a cactus‐inspired surface decorated with multiple directional artificial spines for highly efficient water collection and transportation is presented. The nanoscale hydrophobic coating is sputtered on the surface of the 3D‐printed spines to accelerate the water growth rate. The results show that the hexagonally arranged clusters enhance the moisture airflow around 3D‐printed spines, and the printed spines with 10° tip angle and hydrophobic coating achieve the highest weight gain of 2 mg min−1 mm−3. This study opens intriguing perspectives for designing next‐generation structural materials with the special spatial distribution of biomimetic features to achieve energy free and highly efficient water collection. The results reported here are believed to be helpful for the development of environmental friendly water collection, water transportation, and water separation devices.
Designing high-temperature polymers with excellent processability is a long-standing challenge because of the implacable contradiction between high thermal stability and low curing energy. Traditional designs based on scientific intuition and trial-and-error experiments have not been efficient strategies for the discovery of new heat-resistant resins. In this work, we developed a materials genome approach to facilitate the design of new heat-resistant resins with the desired properties. By defining the gene and extracting key features for properties, we proposed a two-step strategy to screen candidate resins obtained from combinations of genes. A new kind of heat-resistant resin was predicted by rapid screening and was further verified by theoretical simulations and experimental studies. The basic framework developed for the present materials genome approach can be generalized for the rapid design of other highperformance materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.