Rheumatoid arthritis (RA) is a chronic inflammatory disease that is very complex and heterogeneous. If not adequately treated, RA patients are likely to manifest excess of morbidity and disability with an important impact on the quality of life. Pharmacological treatment is based on the administration of the disease-modifying antirheumatic drugs (DMARDs), subdivided into conventional synthetic (csDMARDs), targeted synthetic (tsDMARDs), and biological (bDMARDs). bDMARDs are now frequently administered in patients, both as alternative treatment and together with csDMARDs. Unfortunately, there is a therapeutic response variability both to old and new drugs. Therefore, to identify pre-therapeutic and on-treatment predictors of response is a priority. This review aims to summarize recent advances in understanding the causes of the variability in treatment response in RA, with particular attention to predictive potential of autoantibodies and DMARD pharmacogenetics. In recent years, several biomarkers have been proposed to personalize the therapy. Unfortunately, a magic bullet does not exist, as many factors concur to disease susceptibility and treatment outcomes, acting around the patient’s congenital background. Models integrating demographic, clinical, biochemical, and genetic data are needed to enhance the predictive capacity of specific factors singularly considered to optimize RA treatment in light of multidisciplinary patient management.
Over the last years, physiological studies have proved that ventilation with a oxygenated liquid perfluorocarbon (PFC) provides effective gas exchange and acid base balance and improves lung function and recovery. Low surface tension and high respiratory gas solubility enable adequate oxygenation and carbon dioxide removal at low insufflation pressure. The elimination of air-liquid interfacial surface tension has recently suggested the adoption of total liquid PFC ventilation as an investigational therapy for severe respiratory distress in human infants. This work is aimed to determine the optimal volumes of PFC to be delivered, the frequency of the ventilatory cycle, the oxygen flow rate and the best circuit set up for neonatal application. The optimisation was obtained through the implementation of a simulation mathematical model of oxygen diffusion in a PFC-ventilated lung and of gas exchange between alveolar environment and pulmonary blood flow. The results show that total liquid ventilation is a valid alternative to traditional gas ventilation, particularly when immature neonates with insufficient or absent production of surfactant are concerned.
Fifteen elderly patients, 13 of them undergoing chronic haemodialysis, 1 acute and 1 coming from Continuous Ambulatory Peritoneal Dialysis (CAPD) either with no significant cardiovascular alteration or presenting various cardiovascular pathologies were studied to investigate the possibility of onset of hypotensive episodes during dialytic treatment depending on cardiac or vascular alteration in the patients. Monitoring of the arterial pressure on the contralateral arm and on the lower limbs by using the Takeda System, made it possible to compute the Windsor Index (WI). The figures obtained were correlated to the Ejection Fraction Index (EFI) to investigate the relation between WI alteration and haemodynamic variations in the patient. The results show that cardiothoracic recirculation is much more present in those patients with pathologies that affect EFI which worsens during dialysis due to the loss of fluid. Moreover the results obtained from the two patients with temporary access and no evident cardiovascular pathology show the constancy of the haemodynamic parameters throughout the dialytic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.