From the fluorescence properties of chalcones as a function of solvent polarity, and by the comparison to derivatives with donors and acceptors and with various selectively bridged bonds, it can be concluded that two emissive and two nonemissive states are needed to describe the fluorescence behavior. Three of these states are connected with bond twisting and lead to species with high or low dipole moment, two of them situated in the proximity of a conical intersection.
The excited-state dynamics of two donor-acceptor biaryls that differ by the strength of the acceptor, a pyridinium or a pyrylium moiety, have been investigated using a combination of steady-state solvatochromic absorption, ultrafast fluorescence, as well as visible and infrared transient absorption spectroscopies. The negative solvatochromic behavior of pyridinium phenolate indicates that the permanent electric dipole moment experiences a decrease upon S1 ← S0 excitation, implying that the ground state possesses more zwitterionic character than the excited state. In contrast, pyrylium phenolate exhibits a weakly positive solvatochromic behavior corresponding to a small increase in the dipole moment upon excitation, implying more zwitterionic character in the excited than the ground state. Both compounds are therefore situated at different sides of the cyanine-limit structure, which has equally polar ground and excited states. Despite these differences, both molecules exhibit qualitatively similar excited-state properties. They are characterized by a very short fluorescence lifetime, increasing from about 1 to 20 ps, when varying solvent viscosity from 0.4 to 11 cP. There are, however, characteristic differences between the two compounds: The excited-state lifetimes of the pyrylium dye are shorter and also depend somewhat on polarity. The ensemble of spectroscopic data can be explained with a model where the emitting Franck-Condon excited state relaxes upon twisting around the single bond between the aryl units to a point where the excited- and ground-state surfaces are very close or intersect. After internal conversion to the ground state, the distorted molecule relaxes back to its equilibrium planar configuration, again largely dependent upon solvent viscosity. However, in this case, the kinetics for the pyrylium dye are slower than for the pyridinium dye and the polar solvent-induced acceleration is significantly stronger than in the excited state. This difference of kinetic behavior between the two compounds is a direct consequence of the change of the electronic structure from a normal to an overcritical merocyanine evidenced by steady-state spectroscopy.
The photophysical properties of several acceptor substituted 1-arylpyrene derivatives were investigated. The fluorescence spectra strongly depend on the nature of the aryl moiety and the position and number of methoxycarbonyl acceptor groups. Dual fluorescence, originating from a locally excited and a charge transfer state, was observed for the diester derivatives. The solvent dependence of the dual fluorescence and the slightly curved solvatochromic plots indicate a change of the character of the excited states from solvents of low to high polarity. The rate constants for fluorescence and nonradiative decay were calculated to reveal the nature of the excited-state relaxation, that is, the increase of the mesomeric interactions by geometrical flattening or stabilization of the CT state by further twisting toward perpendicularity. Flattening is the major relaxation pathway of the diester phenylpyrene derivative in nonpolar solvents whereas in highly polar solvents the low value for the fluorescence transition dipole moment (M f ) indicates stabilization of the charge transfer state by further twisting. The fluorescence of the diester biphenylpyrene derivative originates from a locally excited state (LE) in nonpolar solvents. The low value for M f in polar solvents and the change of the relative intensity of the dual fluorescence signals with the temperature indicate that the red-shifted fluorescence can be assigned to a twisted intramolecular charge transfer state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.