Technological heredity of operational properties in the processes of manufacturing, operation and restoration of machine parts is proposed to describe by the graph reflecting the coefficients of transmission and mutual influence of physical, mechanical and geometric parameters. The technological control methods of the heredity of operational properties of parts are considered, including: measuring parameters of the most critical parts; determining technological heredity mechanisms on the basis of transfer coefficients and mutual influence of operational properties; analyzing technological barriers during intensive effects of energy flows, developing measures for controlling technological processes.
On the basis of technical and economic analysis of the properties of relations between design and technological solutions, a method for the integral assessment of production manufacturability by combining individual manufacturability coefficients at different stages of the product life cycle is suggested. Separate coefficients take into account the influence degree of various constituent stages on the labor intensity of production and maintenance, repair and disposal of the product structure. Design and technological solutions in design systems imply the use of properties such as reflexivity, symmetry and transitivity. As a result, it is proposed to understand the properties set of the product design that determine its adaptability to achieve optimal costs in production and disposal for specified quality indicators and work conditions. A list of manufacturability coefficients of manufacturing a product design has been determined, including coefficients of purchase, repeatability of details and connections, material hardness, borrowing, typing, precision, roughness, mass. An examination of the effectiveness assessment the use tools, equipment and other objects of the technological environment at the stages design and technological production preparation is formalized. The examination includes an analysis of the frequency and duration of the meeting of structural parts elements and the tools state at the stages of their manufacture, operation and disposal.
The structure and microhardness of an aluminum alloy with additives of nanostructured cubic boron nitride (cBN) after treatment under high pressure and temperature are investigated. А nanostructured powder of cBN with primary particles within 50–200 nm is used as a filler. A preliminary chemical-thermal modifying of the nanostructured cBN, which consists in its high-temperature annealing in the temperature range of 750–950 °C in a medium of aluminum-contai ning compounds, is carried out to increase the chemical affinity of the nanostructured cBN to the aluminum matrix. It is shown that the modifying of nanostructured cBN with aluminum increases the strength of the additives retention in the aluminum matrix. At the same time the increase in the concentration of BN additives from 1.5 to 5 wt.% as well as the increase in the treatment temperature at a fixed pressure promotes the increase in the microhardness of the material by a factor of 1.5 to 2 as compared with the base aluminum alloy without the addition of a modifier. An increase in the cBN concentration to 5 % by weight results in an increase in the fraction of smaller particle conglomerates (1–5 μm) in the material and in a decrease in the size of large inclusions to 10–20 μm. In this case, the distribution of BN particles in the aluminum matrix is more uniform in comparison with a material with a cBN content of 1.5 wt.%. In the material with the growth of temperature up to 1000 °С, cBN in aggregates is recrystallized with the formation of single-crystal (polycrystalline) particles with the size of 1–10 μm with faceting specific for cBN micron particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.