The Southern Photometric Local Universe Survey (S-PLUS) is imaging ∼9300 deg2 of the celestial sphere in 12 optical bands using a dedicated 0.8 m robotic telescope, the T80-South, at the Cerro Tololo Inter-american Observatory, Chile. The telescope is equipped with a 9.2k × 9.2k e2v detector with 10 $\rm {\mu m}$ pixels, resulting in a field of view of 2 deg2 with a plate scale of 0.55 arcsec pixel−1. The survey consists of four main subfields, which include two non-contiguous fields at high Galactic latitudes (|b| > 30°, 8000 deg2) and two areas of the Galactic Disc and Bulge (for an additional 1300 deg2). S-PLUS uses the Javalambre 12-band magnitude system, which includes the 5 ugriz broad-band filters and 7 narrow-band filters centred on prominent stellar spectral features: the Balmer jump/[OII], Ca H + K, H δ, G band, Mg b triplet, H α, and the Ca triplet. S-PLUS delivers accurate photometric redshifts (δz/(1 + z) = 0.02 or better) for galaxies with r < 19.7 AB mag and z < 0.4, thus producing a 3D map of the local Universe over a volume of more than $1\, (\mathrm{Gpc}/h)^3$. The final S-PLUS catalogue will also enable the study of star formation and stellar populations in and around the Milky Way and nearby galaxies, as well as searches for quasars, variable sources, and low-metallicity stars. In this paper we introduce the main characteristics of the survey, illustrated with science verification data highlighting the unique capabilities of S-PLUS. We also present the first public data release of ∼336 deg2 of the Stripe 82 area, in 12 bands, to a limiting magnitude of r = 21, available at datalab.noao.edu/splus.
The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55m JST at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg 2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg 2 field-of-view and plate scale of 0.23 arcsec pixel −1 . To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∼1 deg 2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (NB, FWHM ∼ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band (BB) filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of mag AB 22 − 23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3 aperture). The miniJPAS primary catalog contains more than 64, 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≤ 0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∼ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude. For reference, the miniJPAS data and associated value added catalogs are publicly available http://archive.cefca.es/catalogues/minijpas-pdr201912.
We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and W Hα vs.[NII]/Hα (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [OIII]/Hβ, log [NII]/Hα, and log EW(Hα) optical parameters. The best-fit GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's Active Galaxy Nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence -based on four GCs -for the existence of a Seyfert/LINER dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated to the LINER and Passive galaxies on the BPT and WHAN diagrams respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit.Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical datasets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox https://cointoolbox.github.io/GMM_Catalogue/.
Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100,000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive.Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110,000 unique target stars. Elemental abundances were derived for up to 32 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.