In this paper, we introduce and study new type Szász‐Mirakyan‐Kantorovich operators using a technique different from classical one. This allow to analyze the mentioned operators in terms of exponential test functions instead of the usual polynomial type functions. As a first result, we prove Korovkin type approximation theorems through exponential weighted convergence. The rate of convergence of the operators is obtained for exponential weights.
Difference of exponential type Szász and Szász-Kantorovich operators is obtained. Similar estimates are given for higher order $\mu$-derivatives of the Szász operators and the Szász-Kantorovich type operators acting on the same order $\mu$-derivative of the function. These differences are given in quantitative form using first modulus of continuity. Convergence in variation of the operators in the space of functions with bounded variation with respect to the variation seminorm is obtained. The results propose a general framework covering the results provided by previous literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.