Auto-Z(eff) facilitates easy computation of effective atomic numbers as a function of energy, as well as average and spectral-weighted means. The results are significantly more accurate than normal power-law predictions. The software is freely available to interested readers, who are encouraged to contact the authors.
This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.
Our application of EPID dosimetry to HDR brachytherapy provides a quality assurance measure of the geometrical distribution of the delivered dose as well as the source positions, which is not possible with any current HDR brachytherapy verification system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.