1. Motor unit activity was recorded with intramuscular fine wire electrodes during isometric, concentric, and eccentric activity in the human first dorsal interosseus muscle. Twenty-one units from 11 subjects were sampled. 2. During isotonic cycles of shortening and lengthening, 18 of 21 units were recruited during the concentric phase, increased their discharge rates as the concentric movement progressed, then decreased their discharge rate during the eccentric phase, and were derecruited. 3. A different pattern of recruitment was observed in recordings from three units. These units were recruited during the eccentric phase, at a time when other units were decreasing their discharge rate or being derecruited. In two of the units selectively recruited during the eccentric phase, it was possible to determine their isometric thresholds, which were higher than those of units exhibiting the more common pattern of recruitment. 4. For two of the three units exhibiting selective recruitment during eccentric contraction, the unit was recorded simultaneously with different pairs of recording wires separated by 5-10 mm. Each discharge of these units was detected by both electrodes, making it unlikely that movement artifact was responsible for the initiation or cessation of discharge. 5. The recruitment patterns observed suggest that changes in the type or distribution of synaptic inputs to motoneurons during movement can, in some instances, override pre- and postsynaptic factors that shape recruitment order in isometric conditions.
Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.