The polarized absorption spectra of single crystals of oligothiophenes in a wide spectral range are reported. The experimental procedure is discussed, underlying several details which are relevant to obtain reliable spectra particularly for samples of increasing thickness. On the basis of these considerations, it has been possible to fully detect the transition to the upper Davydov exciton originating from the first molecular state. The position and shape of the main exciton peak in these materials are compared and discussed, taking into consideration the molecular arrangement and the longitudinal contribution which depends on the transition moment orientation. The Davydov splitting values as deduced from the experimental data at room temperature are also reported either for the first vibronic replica or for the electronic transition as a whole. The difference between the purely transverse and the measured Davydov splitting is discussed.
Due to the large oscillator strength of the first molecular transition in oligothiophenes, a strong directional dispersion of the b(u) exciton transition is expected originating from the macroscopic polarization field. Examining such dispersion unambiguously usually requires different faces to be accessible for the optical measurements. Alternatively, measurements carried out at different angles of incidence are met with intrinsic limits due to the peculiarities of wave propagation in such anisotropic systems. In order to demonstrate these limits along with the experimental difficulties involved, we examine refraction and absorption of light in these crystals and discuss the effects of directional dispersion on the absorbance spectra of quaterthiophene crystals.
The polarized optical absorption spectra of different quaterthiophene single crystals in the energy region of the exciton bands originating from the first molecular transition are reported as measured in the temperatures ranging from 7 to 140 K. The intrinsic higher mobility of the b-polarized 0-0 a(u) exciton both with respect to its replicas and to the a-polarized structures is demonstrated in high quality crystals at the lowest temperatures. The influence of structural disorder on mobility is discussed considering, for the different samples, the measured lineshape and linewidth of the absorption peaks, and the relative lineshift and intensity ratio between the 0-0 a(u) line and its first replica at the lowest temperature. The influence of dynamic disorder is discussed considering the lineshape and linewidth of the measured peaks as a function of temperature for both polarizations in the framework of the exciton-phonon coupling theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.