The envelope of thermally pulsing asymptotic giant branch (TP-AGB) stars undergoing periodic third dredge-up (TDU) episodes is enriched in both light and heavy elements, the ashes of a complex internal nucleosynthesis involving p, α, and n captures over hundreds of stable and unstable isotopes. In this paper, new models of lowmass AGB stars (2 M ), with metallicity ranging between Z = 0.0138 (the solar one) and Z = 0.0001, are presented. Main features are (1) a full nuclear network (from H to Bi) coupled to the stellar evolution code, (2) a mass loss-period-luminosity relation, based on available data for long-period variables, and (3) molecular and atomic opacities for C-and/or N-enhanced mixtures, appropriate for the chemical modifications of the envelope caused by the TDU. For each model, a detailed description of the physical and chemical evolutions is presented; moreover, we present a uniform set of yields, comprehensive of all chemical species (from hydrogen to bismuth). The main nucleosynthesis site is the thin 13 C pocket, which forms in the core-envelope transition region after each TDU episode. The formation of this 13 C pocket is the principal by-product of the introduction of a new algorithm, which shapes the velocity profile of convective elements at the inner border of the convective envelope: both the physical grounds and the calibration of the algorithm are discussed in detail. We find that the pockets shrink (in mass) as the star climbs the AGB, so that the first pockets, the largest ones, leave the major imprint on the overall nucleosynthesis. Neutrons are released by the 13 C(α, n) 16 O reaction during the interpulse phase in radiative conditions, when temperatures within the pockets attain T ∼ 1.0 × 10 8 K, with typical densities of (10 6 -10 7 ) neutrons cm −3 . Exceptions are found, as in the case of the first pocket of the metal-rich models (Z = 0.0138, Z = 0.006 and Z = 0.003), where the 13 C is only partially burned during the interpulse: the surviving part is ingested in the convective zone generated by the subsequent thermal pulse (TP) and then burned at T ∼ 1.5 × 10 8 K, thus producing larger neutron densities (up to 10 11 neutrons cm −3 ). An additional neutron exposure, caused by the 22 Ne(α, n) 25 Mg during the TPs, is marginally activated at large Z, but becomes an important nucleosynthesis source at low Z, when most of the 22 Ne is primary. The final surface compositions of the various models reflect the differences in the initial iron-seed content and in the physical structure of AGB stars belonging to different stellar populations. Thus, at large metallicities the nucleosynthesis of light s-elements (Sr, Y, Zr) is favored, whilst, decreasing the iron content, the overproduction of heavy s-elements (Ba, La, Ce, Nd, Sm) and lead becomes progressively more important. At low metallicities (Z = 0.0001) the main product is lead. The agreement with the observed [hs/ls] index observed in intrinsic C stars at different [Fe/H] is generally good. For the solar metallicity model, w...
Context. Carbon rich objects represent an important phase during the late stages of evolution of low and intermediate mass stars. They contribute significantly to the chemical enrichment and to the infrared light of galaxies. A proper description of their atmospheres is crucial for the determination of fundamental parameters such as effective temperature or mass loss rate. Aims. We study the spectroscopic and photometric properties of carbon stars. In the first paper of this series we focus on objects that can be described by hydrostatic models neglecting dynamical phenomena like pulsation and mass loss. As a consequence, the reddening due to circumstellar dust is not included. Our results are collected in a database, which can be used in conjunction with stellar evolution and population synthesis calculations involving the AGB. Methods. We have computed a grid of 746 spherically symmetric COMARCS atmospheres covering effective temperatures between 2400 and 4000 K, surface gravities from log(g [cm/s 2 ]) = 0.0 to −1.0, metallicities ranging from the solar value down to one tenth of it and C/O ratios in the interval between 1.05 and 5.0. Subsequently, we used these models to create synthetic low resolution spectra and photometric data for a large number of filter systems. The tables including the results are electronically available. First tests of the application on stellar evolution calculations are shown. Results. We have selected some of the most commonly used colours in order to discuss their behaviour as a function of the stellar parameters. A comparison with measured data shows that down to 2800 K the agreement between predictions and observations of carbon stars is good and our results may be used to determine quantities like the effective temperature. Below this limit the synthetic colours are much too blue. The obvious reason for these problems is the neglect of circumstellar reddening and structural changes due to pulsation and mass loss. Conclusions. The warmer carbon stars with weak pulsation can be successfully described by our hydrostatic models. In order to include also the cooler objects with intense variations, at least a proper treatment of the reddening caused by the dusty envelopes is needed. This will be the topic of the second paper of this series.
Context. Red giant stars approaching the end of the evolutionary phase of the asymptotic giant branch (AGB) are, inter alia, characterised by (i) pulsations of the stellar interiors; and (ii) the development of dusty stellar winds. Therefore, such very evolved objects cannot be adequately described with hydrostatic dust-free model atmospheres. Aims. By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds we studied in detail the influence of the above mentioned two effects on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes (resulting from the outflows which contain dust particles composed of amorphous carbon) cause pronounced circumstellar reddening. Methods. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters (Johnson-Cousins-Glass system) from the visual to the near-infrared. The synthetic photometry was subsequently compared with observational results. Results. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains (increasing towards shorter wavelengths; Q abs /a ∝ λ −β with β ≈ 1), leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account for this circumstellar reddening we get synthetic colours that are comparable to observations of evolved AGB stars. The photometric variations of the dynamical model were compared to observed lightcurves of the C-type Mira RU Vir which appears to be quite similar to the model (although the model is not a dedicated fit). We found good agreement concerning the principal behaviour of the BVRIJHKL lightcurves and also quantitatively fitting details (e.g. magnitude ranges, the amplitude decrease from visual to NIR, absolute magnitudes). The analysed model is able to reproduce the variations of RU Vir and other Miras in (J − H) vs. (H − K) diagrams throughout the light cycle (ranges, loops). Contrasting the model photometry with observational data for a variety of galactic C-rich giants in such colour-colour diagrams proved that the chosen atmospheric model fits well into a sequence of objects with increasing mass loss rates, i.e., redder colour indices. Conclusions. The comparison of our synthetic photometry with observational results provides a further indication that the applied dynamic model atmospheres represent the outer layers of pulsating and mass-losing C-rich AGB stars reasonably well.
The concomitant overabundances of C, N, and s-process elements are commonly ascribed to the complex interplay of nucleosynthesis, mixing, and mass loss taking place in asymptotic giant branch (AGB) stars. At low metallicity, the enhancement of C and/or N can be up to 1000 times larger than the original iron content and significantly affects the stellar structure and its evolution. For this reason, the interpretation of the already available and still growing amount of data concerning C-rich metal-poor stars belonging to our Galaxy as well as to dwarf spheroidal galaxies would require reliable AGB stellar models for low and very low metallicities. In this paper we address the question of calculation and use of appropriate opacity coefficients, which take into account the C enhancement caused by the third dredge-up. A possible N enhancement, caused by the cool bottom process or by the engulfment of protons into the convective zone generated by a thermal pulse and the subsequent huge third dredge-up, is also considered. Based on up-to-date stellar models, we illustrate the changes induced by the use of these opacity coefficients on the physical and chemical properties expected for these stars.
Aims. We investigate the change in the surface abundance of 12 C during the evolution along the AGB, aiming to constrain third dredge-up models. Methods. High-resolution, near-infrared spectra of a sample of AGB stars in the LMC cluster NGC 1846 were obtained. A cluster sample ensures a high level of homogeneity with respect to age, metallicity, and distance. The C/O ratio and the ratio of 12 C/ 13 C were measured and compared with our evolutionary models. Results. For the first time, we show the evolution of the C/O and 12 C/ 13 C ratios along a cluster AGB. Our findings allow us to check the reliability of the evolutionary models and, in particular, the efficiency of the third dredge up. The increase in both C/O and 12 C/ 13 C in the observed O-rich stars is reproduced by the models well. However, the low carbon isotopic ratios of the two C-stars in our sample indicate the late occurrence of moderate extra mixing. The extra mixing affects the most luminous AGB stars and is capable of increasing the abundance of 13 C, while leaving unchanged the C/O ratio, which has been fixed by the cumulative action of several third dredge-up episodes. We find indications that the F abundance also increases along the AGB, supporting an in situ production of this element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.