A technique to separate the phase-induced penalty of a cascade of optical filters into dispersion, dispersion slope, and higher-order terms is introduced and its impact on the proper design and engineering of high-speed Dense Wavelength Division Multiplexed (WDM) optical systems and networks is demonstrated. As the currently deployed fiber optic systems and networks strive for higher speeds to respond to the growing global needs for more bandwidth, the impact of physical layer impairments (such as optical filter dispersion slope) which were not significant at lower speeds are now becoming increasingly important and worth looking at. In this article we demonstrate that at speeds of 40 Gbps and beyond, where the next generation systems will be operating, optical filter dispersion slope is at least as important as filter dispersion. As a result, separating the above contributions and accounting for each using the described modeling technique proves to be an effective way for designing and engineering such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.