Spatially resolved tunable diode-laser absorption measurements of the absolute densities of He-I (23S1) metastables in a micro atmospheric pressure plasma jet operated in He/N2 and driven by ‘peaks’- and ‘valleys’-type tailored voltage waveforms are presented. The measurements are performed at different nitrogen admixture concentrations and peak-to-peak voltages with waveforms that consist of up to four consecutive harmonics of the fundamental frequency of 13.56 MHz. Comparisons of the measured metastable densities with those obtained from particle-in-cell/Monte Carlo collision simulations show a good quantitative agreement. The density of helium metastables is found to be significantly enhanced by increasing the number of consecutive driving harmonics. Their generation can be further optimized by tuning the peak-to-peak voltage amplitude and the concentration of the reactive gas admixture. These findings are understood based on detailed fundamental insights into the spatio-temporal electron dynamics gained from the simulations, which show that voltage waveform tailoring allows to control the electron energy distribution function to optimize the metastable generation. A high degree of correlation between the metastable creation rate and the electron impact excitation rate from the helium ground state into the He-I ((3s)3S1) level is observed for some conditions which may facilitate an estimation of the metastable densities based on phase resolved optical emission spectroscopy measurements of the 706.5 nm He-I line originating from the above level and metastable density values at proper reference conditions.
Capacitively coupled micro atmospheric pressure plasma jets are important tools for the generation of radicals at room temperature for various applications. Voltage waveform tailoring (VWT), which is based on the simultaneous use of a set of excitation frequencies, has been demonstrated to provide an efficient control of the electron energy probability function (EEPF) in such plasmas and, thus, allows optimizing the electron impact driven excitation and dissociation processes as compared to the classical single-frequency operation mode. In this work, the effects of changing the driving frequencies on the spatio-temporally resolved electron power absorption dynamics, the generation of helium metastables and the dissociation of nitrogen molecules are investigated in He/N2 plasmas based on experiments and simulations. We find that under a single-frequency excitation, the plasma and helium metastable densities are enhanced as a function of the driving frequency at a fixed voltage. When using valleys-type driving voltage waveforms synthesized based on consecutive harmonics of the fundamental driving frequency, the spatial symmetry of the electron power absorption dynamics and of the metastable density profile is broken. Increasing the fundamental frequency at a constant voltage is found to drastically enhance the plasma and metastable densities, which is a consequence of the change of the EEPF. Finally, we compare the energy efficiency of the formation of radicals under single-frequency and VWT operation at different driving frequencies. For a given power dissipated in the plasma, VWT yields a higher helium metastable as well as electron density and a higher dissociation rate of N2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.