Autosomal recessive congenital ichthyosis (ARCI) is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3) and abolishes a sequence for a long non-coding RNA (FLJ42289). Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3) and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.
The semilethal skeletal malformation syndrome campomelic dysplasia (CD) with or without XY sex reversal is caused by mutations within the SOX9 gene on 17q24.3 or by chromosomal aberrations (translocations, inversions or deletions) with breakpoints outside the SOX9 coding region. The previously published CD translocation breakpoints upstream of SOX9 fall into two clusters: a proximal cluster with breakpoints between 50-300 kb and a distal cluster with breakpoints between 899-932 kb. Here, we present clinical, cytogenetic and molecular data from two novel CD translocation cases. Case 1 with karyotype 46,XY,t(1;17)(q42.1;q24.3) has characteristic symptoms of CD, including mild tibial bowing, cryptorchidism and hypospadias. By standard fluorescence in situ hybridization (FISH) and by high-resolution fiber FISH, the 17q breakpoint was mapped 375 kb from SOX9, defining the centromeric border of the proximal breakpoint cluster region. Case 2 with karyotype 46,X,t(Y;17)(q11.2;q24.3) has the acampomelic form of CD and complete XY sex reversal. By FISH and somatic cell hybrid analysis, the 17q breakpoint was mapped 789 kb from SOX9, defining the telomeric border of the distal breakpoint cluster region. We discuss the structure of the 1 Mb cis-control region upstream of SOX9 and the correlation between the position of the 14 mapped translocation breakpoints with respect to disease severity and XY sex reversal.
Townes-Brocks syndrome (TBS) is an autosomal dominantly inherited disordercharacterized by ear, anal, limb, and renal malformations, and results from mutations in the gene SALL1. All SALL1 mutations previously found in TBS patients create preterminal termination codons. In accordance with the findings of pericentric inversions or balanced translocations, TBS was initially assumed to be caused by SALL1 haploinsufficiency. This assumption was strongly contradicted by a Sall1 mouse knock-out, because neither heteronor homozygous knock-out mutants displayed a TBS-like phenotype. A different mouse mutant mimicking the human SALL1 mutations, however, showed a TBS-like phenotype in the heterozygous situation, suggesting a dominant-negative action of the mutations causing TBS. We applied quantitative real time PCR to detect and map SALL1 deletions in 240 patients with the clinical diagnosis of TBS, who were negative for SALL1 mutations. Deletions were found in three families. In the first family, a 75 kb deletion including all SALL1 exons had been inherited by two siblings from their father. A second, sporadic patient carried a de novo 1.9-2.6 Mb deletion including the whole SALL1 gene, and yet another sporadic case was found to carry an intragenic deletion of 3384 bp. In all affected persons, the TBS phenotype is rather mild as compared to the phenotype resulting from point mutations. These results confirm that SALL1 haploinsufficiency is sufficient to cause a mild TBS phenotype but suggest that it is not sufficient to cause the severe, classical form. It therefore seems that there is a different contribution of SALL1 gene function to mouse and human embryonic development.
The diagnosis of NPH1 was proven by molecular genetic techniques in 62% of families with one or more children with the presumed diagnosis of NPH. We present evidence that there is a fourth locus for NPH, since only 6 of the 26 multiplex families in whom the diagnosis of NPH1 was excluded were compatible with linkage to other loci for NPH. On the basis of the presented data, we propose an algorithm for molecular genetic diagnostics in NPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.