Research indicates that glial fibrillary acidic protein (GFAP), part of the astroglial skeleton, could be a marker of traumatic brain injury (TBI). S100B, an astroglial protein, is an acknowledged marker of TBI. Our goal was to analyze the relationship of GFAP/S100B to brain damage and outcome, and to compare the accuracy of GFAP/S100B for prediction of mortality after TBI. Our prospective study included 92 patients admitted <12 h after TBI (median injury severity score 25, median Glasgow Coma Scale 6). TBI was verfied by computerized tomography. GFAP/S100B were measured immunoluminometrically at admission and daily in the intensive care unit (average 10 days, range 1-21 days). We compared GFAP/S100B in non-survivors versus survivors, accuracy for mortality prediction according to receiver operated characteristic curve analysis, correlation between GFAP and S100B, relationship of GFAP/S100B to computerized tomography, cerebral perfusion pressure (CPP), mean arterial pressure (MAP) and 3-month Glasgow Outcome Score (GOS). GFAP (p < 0.005) and S100B (p < 0.0005) were higher in non-survivors than survivors. Both GFAP and S100B were accurate for mortality prediction (area under curve 0.84 versus 0.78 at <12 h after TBI). GFAP and S100B release correlated better later than 36 h after TBI (r = 0.75) than earlier (r = 0.58). GFAP was lower in focal lesions of <25 mL than in shifts of >0.5 cm (p < 0.0005) and non-evacuated mass lesions of >25 mL (p < 0.005). S100B was lower in focal lesions of <25 mL than in non-evacuated mass lesions (p < 0.0005) and lower in swelling than in shifts of >0.5 cm (p < 0.005). GFAP and S100B were lower in ICP < 25 than ICP > or = 25 (p < 0.0005), in CPP > or = 60 than CPP < 60 (p < 0.0005), in MAP > 70 than MAP < or = 70 mm Hg, and in GOS 4-5 than GOS 1 (p < 0.0005). Both measurement of GFAP and S100B is a useful non-invasive means of identifying brain damage with some differences based on the pattern of TBI and accompanying multiple trauma and/or shock.
An improvement in OS with CRT was observed but did not achieve statistical significance. The improvement seemed to be associated with a significant reduction in DMR. AC did not improve outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.