Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at √ s = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirements.
Time resolved fluorescence from the first excited (2A1) state of NH2 has been observed following excitation of the radical in its ground state by means of a pulsed tunable dye laser. Specific rotational levels within a number of vibronic states were populated, decay rates measured as a function of total pressure for a variety of added gases, and zero pressure lifetimes and collisional de-excitation rates evaluated. Measured zero pressure lifetimes are good approximations to the vibrational state radiative lifetimes, typically 10 μsec for the (0, 9, 0) state. Collisional de-excitation rate constants were measured as 1.0×10−9 cm3 molecule−1⋅sec−1 for NH3, independent of vibronic state, and for the Σ (0, 9, 0) level were found for other gases in the ratio NH3:CO:H2:N2:CH4:Ar:He=1.0:0.47:0.46:0. 40:0.30:0.152:0.145. Using excitation by a tunable cw dye laser, steady state spectra of NH2 have been obtained and collisional energy transfer observed within the (2A1) excited electronic state of NH2. Transfer was observed both within the initially populated vibronic state and to other such states within the same overall vibrational level. The symmetric or antisymmetric character of the rotational level remained unchanged in collision, i.e., only a↔a and s↔s transfer occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.