In the present work, the characterization of monolithic materials formulated at different weight concentrations was conducted; employing two of the ceramic materials most used in the refractory industry, zircon and alumina. These monolithic materials were fabricated using colloidal techniques, specifically plaster casting mold, in order to obtain pieces with a higher particle consolidation and density, reducing porosity to lower values than the obtained using traditional shaping process of these materials. The monoliths were obtained employing two ceramic powders with different average particle size and morphology to achieve better packing in the green body. This characterization was carried out, firstly, determining the particle size of the raw materials by laser diffraction and the evaluation of particle morphology by scanning electron microscopy. Aqueous suspensions were formulated by containing both ceramic materials, which were dispersed with Tamol 963, and analyzed by rheometric techniques. Subsequently, bars were manufactured having the following dimensions; 4 mm wide, 3 mm thick and 45 mm in length, according to ASTM C1161-02cc, to be characterized microstructural and mechanically, also was observed the fracture habit after the mechanical test. As a final result, the materials formulated at higher alumina content showed higher density values, reaching 94.95% of the theoretical density, also showed a higher thermal expansion coefficient and high rupture modulus, reaching up to 600 MPa and Young modulus of 230 GPa. From the microstructure characterization it was observed that alumina matrix shows a transgranular fracture across the grains and zircon particles exhibited intergranular fracture among the grain boundaries.
In recent years there have been many studies attempting to increase the mechanical properties and reliability of structural ceramic materials; the forming methods used for this purpose are based on multi-layered materials to induce residual stress between interface layers. In this work were made monolithic and multi-layered materials manufactured by casting in plaster of Paris molds using zircon and alumina as raw materials, mechanical and microstructure characterizations were compared, founding that, indeed, the laminar designs can substantially improve the mechanical properties of manufactured materials by the compressive stress between the interface layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.