This work discusses the temperature behavior of the various photoluminescence (PL) transitions observed in undoped, n- and p-doped GaN in the 9–300 K range. Samples grown using different techniques have been assessed. When possible, simple rate equations are used to describe the quenching of the transitions observed, in order to get a better insight on the mechanism involved. In undoped GaN, the temperature dependence of band edge excitonic lines is well described by assuming that the A exciton population is the leading term in the 50–300 K range. The activation energy for free exciton luminescence quenching is of the order of the A rydberg, suggesting that free hole release leads to nonradiative recombination. In slightly p-doped samples, the luminescence is dominated by acceptor related transitions, whose intensity is shown to be governed by free hole release. For high Mg doping, the luminescence at room temperature is dominated by blue PL in the 2.8–2.9 eV range, whose quenching activation energy is in the 60–80 meV range. We also discuss the temperature dependence of PL transitions near 3.4 eV, related to extended structural defects.
GaN quantum dots (QDs) in an AlN matrix have been grown on Si(111) by molecular-beam epitaxy. The growth of GaN deposited at 800 °C on AlN has been investigated in situ by reflection high-energy electron diffraction. It is found that a growth interruption performed at GaN thicknesses larger than three molecular monolayers (8 Å) instantaneously leads to the formation of three-dimensional islands. This is used to grow GaN/AlN QDs on Si(111). Depending on their sizes, intense room-temperature photoluminescence is observed from blue to orange. Finally, we demonstrate that stacking of QD planes with properly chosen dot sizes gives rise to white light emission.
AlGaN/GaN quantum well (QW) structures are grown on c-plane sapphire substrates by molecular beam epitaxy. Control at the monolayer scale of the well thickness is achieved and sharp QW interfaces are demonstrated by the low photoluminescence linewidth. The QW transition energy as a function of the well width evidences a quantum-confined Stark effect due to the presence of a strong built-in electric field. Its origin is discussed in terms of piezoelectricity and spontaneous polarization. Its magnitude versus the Al mole fraction is determined. The role of the sample structure geometry on the electric field is exemplified by changing the thickness of the AlGaN barriers in multiple-QW structures. Straightforward electrostatic arguments well account for the overall trends of the electric-field variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.